3-D GSDM Computations - BK3 & BK4

Earl F. Burkholder, PS, PE, F.ASCE

Global COGO, Inc. - Las Cruces, NM 88003

Email: eburk@globalcogo.com URL: www.globalcogo.com

This spreadsheet performs BK3 & BK4 computations on user selected ellipsoid - default is GRS80.

Ellipsoid: GRS80 (The ellipsoid name and parameters may be changed by the user.)

a = 6,378,137.000		
1/f = 298.25722210088	$e^2 = 2 * f - f^2$	$e^2 = 0.006694380022903$

Excel uses angular units of radians for trigonometric functions.

This spreadsheet uses seconds per radian (spr) for conversion - spr = 206,264.806247096

- **BK3** Input beginning geocentric coordinates of Pt 1 and coordinate differences Pt 1 to Pt2. Output - Geocentric ECEF X/Y/Z rectangular coordinates of Pt 2 in meters. Notes:
 - 1. If points are on the ellipsoid, this computation is known as the geodetic forward.
 - 2. The epoch of the ECEF coordinates should also be stated.

	Equations:	$X_2 = X_1 + \Delta X$		$Y_2 = Y_1 + \Delta Y$		$Z_2 =$	$Z_2 = Z_1 + \Delta Z$		
Pt 1	NM Initial Poi	nt (92)		Differences		Pt 2	SW Cor. Sec 31 T23S-R1	E	
X ₁ =	-1,533,309.91	10 m	∆X =	-35,388.1750	т	X ₂ =	-1,568,698.0860 m		
Y ₁ =	-5,050,681.75	20 m	ΔY =	-116,425.3680	т	Y ₂ =	-5,167,107.1200 m		
Z ₁ =	3,571,149.19	40 m	ΔZ =	-185,935.1200	т	Z ₂ =	<mark>3,385,214.0740</mark> m		

BK4 Input - geocentric ECEF X/Y/Z rectangular coordinates at two points. Output - Geocentric coordinate differences between the two points. Notes: -

1. If points are on the ellisoid, this computation is known as the geodetic inverse.

2. The epoch of ECEF coordinates of both points should be the same and stated.

Equations:
$$\Delta X = X_2 - X_1$$
 $\Delta Y = Y_2 - Y_1$ $\Delta Z = Z_2 - Z_1$

Pt 1	NM Initial Point (92) Pt		Pt 2	SW Sec 31 T23S	-R1E	Differences Pt. 2 - Pt. 1		
X ₁ =	-1,533,309.9110	m	X ₂ =	-1,568,698.0860	m ΔX =	- <mark>-35,388.1750</mark> m		
$Y_1 =$	-5,050,681.7520	m	Y ₂ =	-5,167,107.1200	m ΔY =	-116,425.3680 m		
Z ₁ =	3,571,149.1940	m	Z ₂ =	3,385,214.0740	m ΔZ =	- <mark>-185,935.1200</mark> m		

Note: It is prudent to perform the computation both ways to check your work!