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Comparison of Geodetic, State Plane, and Geocentric
Computational Models

Earl F. Burkholder

ABSTRACT: Surveyors make measurements and process those data to compute positions. Plane surveying
uses two-dimensional (2D) coordinates based on assumptions of a flat earth. Plats, maps, and land boundary
descriptions are prepared consistent with those assumptions and many “local practice” clients are well-served.
With these descriptions, the client is well served, and, over the years, many “local practice” businesses have
functioned successfully. But, as technology advances and as the scope of a project or service area gets larger,
those flat earth assumptions become limiting, and plane surveyors are exposed to new challenges. Modern
measurement systems, evolved during the digital revolution, now routinely collect 3D digital geospatial data.
Similarly, computational processes now used in data reduction go well beyond the flat earth assumptions, and
models for processing 3D digital geospatial data have evolved from flat earth models to various ellipsoidal
models to a plethora of map projections to 3D models that support computations in 3D space worldwide, for
example, the global spatial data model. This article includes a comparison of three models used to determine a
3D geodelic position based on a simple totalstation side shot from a known station. The three methods are
geodetic computation on the ellipsoid, state plane computation on a mapping grid, and geocentric compu-
tation in 3D space.
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Introduction

tation “Reilly” (PID AlI5445) is geodetic

control monument on the campus of

New Mexico State University (NMSU) in
Las Cruces, New Mexico. Used extensively by
NMSU surveying engineering students, station
Reilly was established as part of the New Mexico
high-accuracy reference network (HARN), and
its position was published by the National Geo-
detic Survey (NGS) on the North American Datum
of 1983 (1992)—NAD 83 (1992). Although no
longer referred to as an HARN station, NGS has
subsequently published the position of Reilly on
NAD 83 (2007) and NAD 83 (2011). As a learn-
ing exercise, students occupied Reilly with a
total-station surveying instrument, backsighted
a known azimuth mark, turned the horizontal
angle, and observed the slope distance to the
target (a retro-reflector placed on the desk of
the NMSU Associate Dean of Engineering). The
height of the instrument (HI), height of the target
(HT), and zenith direction (Z) to the target were
also observed. This article uses those data in
three different models (geodetic, state plane,
and geocentric) to compute an unmonumented
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3D geodetic position on the associate dean’s desk.
It appears that, with no loss of integrity, the geo-
centric model has advantages of simplicity not
shared by the other two models.

Models and Objective

Models provide a conceptual connection between
the abstract and human experience. Some
models—for example, the flat earth model—are
simple and easy to use, but spatial data models
become more complex as needed to preserve the
integrity of survey measurements and to account
for geometrical relationships that extend beyond
a local perspective. A general statement is that
the “best” model is the simplest one that does not
sacrifice geometrical integrity. Therefore, selec-
tion of the most appropriate spatial data model
for a given application often involves a balance
between simplicity and integrity. The objective of
this article is to compare the ease of use and the
complexity of the three computational proce-
dures (models) that provide essentially identical
answers for a geodetic position on the top of the
NMSU Engineering Associate Dean’s desk:

e Traditional geodetic computations on the

ellipsoid.

e New Mexico central zone state plane coordinates.
e Geocentric XYZvalues computed in 3D space.
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Background, Control Values,
and Measurements (Common
to All Three Models)

The office of the Associate Dean of Engineering
at NMSU is on the ground floor of Goddard
Hall on the NMSU campus. Station Reilly is a
ground-level brass tablet set in the top/middle
of a massive concrete vault in an open area next
to Goddard Hall. The 2015 NGS data sheet lists
the geodetic latitude and longitude position, state
plane values, and geocentric earth-centered earth-
fixed (ECEF) coordinates for station Reilly. An
approximate geoid height at Reilly is also listed
on the data sheet. For this comparison, the North
American Vertical Datum 1988 (NAVD 88) ele-
vation for station Reilly was determined from
local first-order benchmarks using Global Posi-
tioning System and geoid modeling (see http://
www.globalcogo.com/ReilElev.pdf) and a finial
on Skeen Hall about 240 m westerly of station

Equations and Computations

Geodesy Computations on the Ellipsoid

Equations for forward (also ealled “direct”) geo-
detic computations on the ellipsoid are given
in sources such as the works of Vincenty (1975,
1980) and Jank and Kivioja (1980). The equa-
tions used here are for one element of a geo-
detic line as described by Burkholder (2008) and
based on the numerical integration method used
by Jank and Kivioja (1980) who claim that milli-
meter accuracy of a computed position is main-
tained half way around the world when the
individual line element used in the numerical
integration is 200 m or less. Longer elements can
be used on shorter lines while maintaining the
same millimeter accuracy. Burkholder (2008) also
describes a test for checking and assuring the
accuracy of a geodetic forward computation.

Re.illy was sighted for azimuth orientat‘ion. Theﬂ Puesk = P ety + AP (1a)
azimuth to the finial was computed from four See step-by-step
sets of Wild T-2 Polaris observations in 2001. A Adeste = 2 Reitty + A equations below. (1b
Laplace correction obtained using the NGS pro- Heyes = Hpery + AH (1c)
gram “Deflect99” was used to compute a geodetic
azimuth from the observed astronomic azimuth.

The following NAD 83 (2011) values were taken Ag" = S cosgeo 2)
from the NGS data sheet: M

Geodetic State Plane Geocentric

¢ = 32°16'55.93001" N

E = 452,506.490 m X =-1,556,177.595 m

A = 106°45'15.16035" W

= 253°14'44.83965" E

N = 142,268.771 m Y = -5,169,235.284 m

Z = 3,387,551.720 m

Station Reilly

Ellipsoid height (h) 1,166.543 m
Geoid height (V) (Geoid12B) -23.94 m
Grid scale factor 0.99992781
Convergence —0° 16’ 09.5”

Other values used in the computations include
the following:

GRS80 ellipsoid parameters: a = 6,378,137.000 m and e? = 0.006694380023

Seconds per radian (spr) = 206,264.806247

NAVD 88 elevation of Reilly H = 1,190.497 m

Geodetic azimuth from Reilly to finial on Skeen Hall (ougs) = 272°11'09”

Measurements

Electronic distance measurement slope distance (corrected for temperature & prism off-set) = 78.452 m

Angle right from finial to reflector on desk (mean of four sets direct/reverse) = 269°23'08"

Zenith direction to center of reflector (mean of two sets direct/reverse) = 090°54'08”

Height of Instrument at Reilly = 1.682 m

Height of Target on desk = 0.366 m
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S sin Ageo
———sp1

Axll = 3
N cos@ (3)
AH =HI+SDcos Z - HT (4)

+ (curvature and refraction)

Rl“

=SDX sin ZX ——— 5
S =SDX sin R+ (5)
QLGeo = Otps + angle right (6)

where 0eo is geodetic azimuth, Z zenith direc-
tion to target (mean of two D/R sets), S ellipsoidal
distance, SD slope distance, R,, Gaussian mean
radius, % = ellipsoid height at station Reilly.

Radius of curvature in the meridian (M)
a(l—¢?)

M ) )
Radius of curvature in the prime vertical (N)
. (8)
1—e2sin @
R,=VMxN (9)

Computations (use latitude and east longitude
at station Reilly):

6,378,137.00(1 — 0.006694380023)

M = -
[1 — 0.006694380023 x sm?(32"16’55.93001")""]
= 6,353,629.826 m
6,378,137.000
N _— k) 3 ,

1 — 0.006694380023 x sin?(32°16'55.93001")
= 6,984,235.531 m

R, = 1/6,353,629.826 x 6, 384,235.532
= 6,368,914.294 m

h=1,166.543m (from NGS data sheet)

6,368,914.294

§ = 78.452 sin(90°54'08") X == —or ooy
8.452x sin(90°5 8)X6737O,080.837

= 78.428 m
Olgeo =272°11'09" +269°28'08" —360° =181°34'17"

_78.428 cos(181°34'17")

A r_ — _9545] "
® 6.355,600806  Pr T 254504

o 78.428 5in(181°34'17")
= 6,384, 235.531 cos(32°16'55.93001")

x spr(East AL) = —0.08219"

AH = 1.682 + 78.452 cos(90° 54'08") — 0.366
=0.081m

In this case, curvature and refraction is <0.0005
m and is ignored, and the results are as follows:

Paesk = 32°16'55.93001" — 2.54514"
= 32°16'53.38487" N

Adesk = 253°14'44.83965" — 0.08219"
= 253°14'44.75746" E
= 106°45'15.24254" W

Hyesk = 1,190.497m + 0.081m = 1,190.578 m

State Plane Coordinate Compulations:

NM Central Zone

State plane coordinates are computed for the top
of the desk and geodetic positions are computed
from the state plane values. Although the equa-
tions are not listed herein, the geodetic latitude
and longitude are computed from state plane coor-
dinates using the algorithm given by Stem (1989).
Elevation on the desk is computed the same way
as that done in the geodetic method. Computa-
tion of state plane coordinates is as follows:

Paesk = computed from NM central zone
state plane coordinates (10a)

Adesk = computed from NM central zone
state plane coordinates (10b)

Edesk = EReilly + HDgyig X sin (AZGrid) (11)
Naesk = Nreity + HDgria X cos(Azgra) — (12)

where:

HDgiq = SD x sin(Z) X combined factor (13)

combined factor = grid scale factor
X elevation factor  (14)

(15)

elevation factor =

Azgria = Azgiid s + angle right (16)

AZGridoBs = OGeotoBs — convergence at Reilly
(17)

Computations:

AzGidwons = 272°11'09" — (—00°16'09."5)
= 272°27'19"

AZGrid todesk — 272027,19” + 269023,08” — 360°
= 181°50'27"
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6,368,914.294
Combined factor = 0.99992781 ( ,368,9 )

6,370,080.837
= 0.999744695

HDguia = 78.4525in(90°54'08")0.999744695
=78.422 m

Easting ;. = 452,506.490 m
+78.4225in(181° 50'26."6)
=452,503.971 m
Northing,., = 142,268.771 m

+178.422 cos (181° 50'26."6)
=142,190.389 m

Hyesx = 1,190.497 m + 0.081 m (same as before)
=1,190.578 m

Geodetic latitude and longitude for the NM cen-
tral zone NAD 83 state plane coordinates give:

32°16'53.”38488 N
106°45'15.724253 W
1,190.578 m

Latitude on dean's desk

Longitude on dean's desk

Elevation on dean's desk

Geocentric ECEF XYZ Coordinales

Equations for computing ECEF geocentric coor-
dinates are found in Chapter 1 of the book by
Burkholder (2008), which describes the global
spatial data model (GSDM). The equations and
procedures can also be found in other geodesy
texts. When using the GSDM for geodetic com-
putations, the computations are performed in
3D space to obtain the geocentric XYZ coordi-
nate values. For purposes of comparison with the
other two methods, the geocentric XYZ coordi-
nates need to be converted to geodetic latitude,
longitude, and ellipsoid height. Geoid heights are
required to determine orthometric heights (eleva-
tion) from ellipsoid heights. The NGS program,
Geoid12B, was used to compute geoid heights,
and those geoid heights were used to compute
the NAVD 88 elevation on the desk.

Qqesk = computed from XYZ geocentric

ECEF coordinate values (18a)

Mdesk = computed from XYZ geocentric
ECEF coordinate values (18b)
Haesk. = Hgeiny + AH (Different than Equation 3)
(18c¢)
Xdesk = XReilly +AX (19)
Yiesk = YReiny +AY (20)

Zdesk _— ZReilly +AZ (21)
AX = —AesinA — Ansin @ cosA + Au cos @ cosA

(22)

AY = Aecosh — Ansin@sin A + Aucos@sin A
(23)
AZ = Ancos® + Ausin ¢ (24)

Note: Equations (22) to (24) use north latitude
and east longitude at station Reilly.

Ae = SDsin Z sin 0Lgeo (25)
An = SDsin Z cos d.geo (26)
Au=SDcosZ+HI - HT (27)
Computations:
OlGeo = 272°11'09" + 269°28'08" — 360°
=181°34'17"
Ae = 78.452 sin(90°54'08) sin (181°34'17")
=—-2.151'm
An = 178.452 sin (90°54'08) cos (181°34'17")
= -78.413 m
Au = 78.452 cos(90°54'08") + 1.682 — 0.366
=0.081 m

AX = —(-2.151)sin(253°14'44."83965) — (—78.413)
sin(32°16'55."93001) cos(253°14'44."83965) + 0.081
€0s(32°16'55."93001) cos(253°14'44."83965)

= —-14.152 m

AY = (~2.151) cos(253°14'44."83965) — (—78.413)
sin(32°16'55."93001) sin(253°14'44.”83965) 4 0.081
c0s(32°16'55.793001) sin (253°14'44."83965)
= —39.547 m

AZ = —78.413 cos(32°16'55.93001)
+0.0815in(32°16'55."93001) = —66.249 m

Xaesk = —1,556,177.595 m + (—14.152 m)
= —1,556,191.747 m

Yaesk = —5,169,235.284 m + (—39.547 m)
= —5,169,274.831 m

Zaesk = 3,387,551.720 m + (—66.249 m)
= 3,387,485.471 m

These geocentric XYZ values need to be con-
verted to latitude, longitude, and ellipsoid height
(and to elevation) for a comparison to be made.
The longitude computation is very straight for-
ward but the latitude and ellipsoid height com-
putations are more challenging. Techniques such
as one of those described by Meyer (2010) can be

Surveying and Land Information Science



used with excellent results. But, the iteration
method used here provides fully rigorous results
with fewer mathematical gymnastics.

Since the geocentric X and Y values are both
negative, the east longitude lies in the third quad-
rant of the equator and is computed (with due
regard to radian units) as

Y
A = 180° + atan (32) = Fast longitude  (28)

—5,169,274.831
Longitude = 180° + atan (——27>

—1,556,191.747
= 253°14'44." 75745 E
= 106°45'15."24255 W

Closed form equations for computing geocen-
tric XYZ coordinates from latitude, longitude, and
ellipsoid height are called a BK1 transformation
by Burkholder (2008) and given as

X = (N+ h)cos@cosh (29)
Y = (N + h)cospsini (30)
Z=[N(1-¢)+h]sing (31)

A mathematical inversion of Equations (35) to
(87) can be used to compute the latitude and
ellipsoid height from the XYZ coordinates. That
inversion is also closed form but must be solved
using iteration. Solving those inverted equations is
referred to as a BK2 transformation and given in
Chapter 6 of Burkholder (2008)

P =+/X?+ Y2 anintermediate value  (32)

A
¢ = arc tan <m>, ‘seed" value
for subsequent use (33)

a

\/1—e2sin® @,

Z € Ni_1 sin@;_,
= ) WP e T o
(¢; = arc tan [P < I 7 )

Ny = , needed in next step (34)

a

N; = ——, second and
1 — e*sin= @,

subsequent values (36)
Once the solution for latitude has converged suf-

ficiently, the ellipsoid height is computed using
the latest values of ¢ and NV

P
h =
cos @

~N (37)

Using a spreadsheet, the computation of the lati-
tude for the top of the dean’s desk is shown in
Table 1.

The latitude is computed by converting radians
to degrees-minutes-seconds using the conversion
spr = 206,264.806247096 sec/rad.

0 =0.563418389267(206,264.806247)
=116,213."384899 = 32°16'53.”38490

Twelve decimal places of latitude or longitude in
radians translate to six decimal places of seconds
when expressed as degrees, minutes, and seconds.
More decimal places are included in the latitude
tabulation that can be justified. This is done to
show where differences begin to occur. It is safer
to use more iterations than needed to stop the
iteration prematurely. Good judgment is essen-
tial in reporting and interpreting results. In this
case, the comparison between models is made at
five decimal places of seconds for latitude and
longitude (0.”700001 =2 0.0003 m) but, because of
original observations being limited to the milli-
meter, the computed position can only be justi-
fied at five decimal places of seconds.

To compute the elevation (orthometric height)
of the top of the dean’s desk, the ellipsoid height
must be converted to elevation. Milbert (1991)
states that modeled geoid height differences are
more accurate than a modeled geoid height at a
single point. Therefore, two alternates are included
for computing the NAVD 88 elevation of the top
of the desk:

1. Apply the modeled geoid height at the desk

second and subsequent values (35) as obtained from the NGS Geoid12B model.
Iteration Latitude (radian) Difference (radian) Normal (meter) Difference (meter)
0 0.563418945242 - 6,384,570.81481 -
1 0.563418550755 —0.000000394487 6,384,235.29594 —-335.51888
2 0.563418390041 -0.000000160715 6,384,235.29283 -0.00311
3 0.563418389270 -0.000000000770 6,384,235.29281 -0.00002
4 0.563418389267 -0.000000000004 6,384,235.29281 0.00000

Table 1. Computation of latitude for top of the dean's desk.
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Value Geodetic State Plane 3D Geocentric
Latitude 32°16'53.738487 N 32°16'53.738488 N 32°16'53.”38490 N
Longitude 106°45'15.724254 W 106°45/15."24253 W 106°45/15.”24255 W

1,190.568 (alternative 1)
Elevation (meter) 1,190.578 1,190.578

1,190.579 (alternative 2)

Table 2. A comparison of geodetic positions and elevations obtained for top of the dean's desk.

This method relies on the absolute value of
modeled geoid height.

Hgesk = haesk — geoid height (38)

2. Determine the geoid height at both station
Reilly and on the desk using the NGS Geoid12B
model. The difference in geoid height com-
bined with the difference in ellipsoid height
should provide a stronger solution than using
only a single modeled geoid height.

Hyesk = Hreiny + <hdesk = hReilly)
~ geoid heighty,y, )
(39)

— <geoid height

desk

Using NGS interactive software, Geoidl12B com-
putations of geoid heights at station Reilly and
on the dean’s desk are as follows:

-23.943 m
-23.944 m

Geoid height at station Reilly

Geoid height on dean's desk

Elevation on dean’s desk using the alternative 1:
Hiex =1,166.624 m — (—23.944 m)=1,190.568 m
Elevation on dean’s desk using alternative 2:
Haesx=1,190.497m+(1,166.624m —1,166.543 m)
—(—28.944m—(—)23.943m)=1,190.579 m
Summary of Results
A comparison of geodetic position and elevation

of the top of the dean’s desk for all the three
methods is shown in Table 2.

Conclusions and Comments

1. All three methods yielded latitude/longitude
values within 0.00003 sec of arc, that is, agree-

(671

ment within about 0.001 m, consistent with
the quality of the observations.

Elevations derived from the geodetic and state
plane methods are identical. There are two
geocentric solution elevations. The first alter-
native uses the modeled absolute geoid model
value for the top of the desk, and the result
agrees with other methods within 0.011 m.
The second alternative uses ellipsoid height
difference along with modeled geoid height
difference, and the result agrees with the first
two methods within 1 mm. This illustrates the
importance of using geoid modeled differ-
ences (relative) as opposed to using absolute
geoid heights.

The geodetic model uses differential geometry
equations on the ellipsoid. Although those
geodesy equations are straight forward, they
can be intimidating to persons not familiar
with the same. But, all data and equations are
listed herein.

Except maybe for needing to use grid azi-
muth and grid distance, Equations (11) and
(12) in the state plane model are quite familiar
to plane surveyors. Equations (13) to (17) deal
with concepts of grid scale factors, eleva-
tion factors, combined factors, and conver-
gence. Although not needed or used in the
3D model, they are required when using the
state plane model.

The process of computing latitude and longi-
tude from state plane coordinates is rather
complicated, and the equations are not listed.
However, those computations have become
ingrained in modern practice, and software is
readily available for making those conversions.
Stem’s (1989) work is an excellent source for
equations and algorithms for NAD 83 state
plane coordinate conversions.

The geocentric computations are performed
in 3D space using rules of solid geometry. The
equations for geocentric computations are
readily available in Burkholder (2008) and
other sources. Additional on-line resources
are available as follows:
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www.globalcogo.com/GM008.pdf

Gives equations for /A/h to X/Y/Z (BK1)

www.globalcogo.com/GMO009.pdf

Gives equations for X/Y/Z to /A/h (BK2)

www.globalcogo.com/GMO010.pdf

Diagrams illustrating BK1 & BK2 computation

www.globalcogo.com/DD-BK2.xlsx

Excel file for dean's desk BK2 computation

www.globalcogo.com/DD-BK2.pdf

PDF file for dean's desk BK2 computation

7. The BK2 computation is the most diffi-
cult part of the GSDM geometrical computa-
tions. The BKI transformations from latitude/
longitude/height to geocentric X/Y/Z coor-
dinates are fairly straight forward but the
reverse process (BK2) inverts those equations.
The solution is also closed form, but these
equations must be iterated for a solution.
Iteration is used in the above spreadsheet file
for BK2 computations.

8. Other alternatives to the iteration proce-
dure used in the BK2 spreadsheet include
the following:

e Vincenty (1980) devised a noniterative algo-
rithm as used in the following link: www
.globalcogo.com/GMO009.pdf. Comparisons
have been made using these equations with
excellent results, even out to satellite heights.

e Equations (28) to (35) given by Meyer
(2010) can be used for a reliable nonitera-
tive computational alternative.

9. The author concludes that the 3D GSDM
can be used to perform most 3D spatial data
computations in 3D space with greater ease
and efficiency than performing similar com-
putations on the ellipsoid or using a map
projection such as state plane or Universal
Transverse Mercator coordinates. Furthermore,

the GSDM preserves geometrical integrity in
spatial data computations.
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