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A local coordinate system is one that treats a portion of the earth’s surface as if it was 
flat and allows spatial data users to identify the location of a point on the earth with 
simple plane coordinates.  It can be either two-dimensional (2-D) or three-dimensional 
(3-D) and is essentially the conventional Cartesian coordinate system that has been 
around since Rene Descartes published his discourse on geometry in 1637. 
 
The most common plane coordinate system used by surveyors is a simple tangent plane 
touching the earth at a point selected by the user.  Other details include assumed 
coordinates assigned to the origin and some reference direction – usually north.  An 
article entitled, “Coordinates, Calculators, and Intersections”  is published in the March 
1986 issue of the ACSM Surveying & Mapping Journal, Vol. 46, No. 1, pp 29-39.  It 
describes features of the Math/Science Reference System and the Surveyor’s 
Reference System and shows how they are used for routine coordinate geometry 
(COGO) computations.  That article is strictly 2-D COGO as applied to surveying 
computations using a standard scientific calculator, spreadsheet, or computer. 
 
But, as everyone knows, the earth is not flat and a tangent plane system distorts 
horizontal angles and distances more and more as one gets further from the origin.  Ever 
since Mercator published his famous map in 1569, the conformal projection has proven 
to be very useful in accommodating earth’s curvature while retaining the simplicity of 
using plane coordinates.  The state plane coordinate systems in the United States are 
based on two variations of Mercator’s projection – the Lambert conic conformal 
projection and the transverse Mercator projection.  In each case, the angles are 
preserved, but the width of a state plane coordinate zone is limited to 158 miles to avoid 
distorting distances more than 1 part in 10,000.  For the Lambert projection the 158-mile 
limitation is in the north-south direction while the 158-mile limitation on the transverse 
Mercator projection is in the east-west direction.  Stated differently, the Lambert 
projection can extend long distances east-west without exceeding the distortion limit 
while the transverse Mercator projection extends a long distance north-south without 
exceeding the 1 in 10,000 distortion limit.    
 
What is magic about the 1 in 10,000 limit?  Nothing -  the limit is arbitrary.  Consider, 
when the state plane systems were designed in the early 1930’s, routine local practice 
consisted of using a transit and steel tape for traversing.  Generally such traverses had a 
ratio of precision of 1 in 5,000 to 1 in 10,000 and a systematic distance distortion up to 1 
in 10,000 could be tolerated without detrimental consequence.  That is no longer the 
case.  Now better measurements can be made with equipment such as EDM, GPS, and 
photogrammetric mapping.  Systematic error corrections for the grid scale factor are 
required to preserve the accuracy of modern measurements. 
 
But, a flaw in the state plane coordinate systems (at least so far as surveyors are 
concerned)  is that the elevation factor was not included as part of the design.  The 
difference between a horizontal distance on the ground and the corresponding grid 
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distance is given by the combined factor – the product of the grid scale factor and the 
elevation factor.  True, in places where the elevation is within about 60 meters of sea 
level, the grid scale factor is the only difference that matters (at 60 meters the elevation 
factor is about 1 in 100,000).  Otherwise, when working with grid and ground distances, 
both factors must be considered.  Again, depending on the level of distortion that can be 
tolerated by the user, the grid/ground distance difference may not be an issue.  But, in 
reality, the pendulum is swinging the other way because 1) modern equipment is used 
which can measure much better than 1 in 10,000 and 2) spatial data users are becoming 
more sophisticated.  The grid/ground distance differences are important within smaller 
and smaller tolerances.  Wouldn’t it be nice to know that a meter is always a meter and 
not some distorted representation thereof? 
 
Perhaps state transportation departments (DOT’s) were the first to really address the 
grid/ground distance difference.   What is required to make the coordinate inverse match 
the centerline stationing difference?  For DOT’s, centerline stationing represents 
horizontal distance and a grid inverse between the same two points which gives a 
different answer is of little use.  In the past 50 years it has become common for state 
DOT’s to design “project datum” coordinate systems in which the distance distortion is 
reduced 1) by multiplying the state plane coordinate values by an elevation ratio, 2) by 
raising the reference ellipsoid to the project elevation,  or 3) by some other method.  The 
result is that a grid coordinate inverse will match the centerline stationing difference 
within some (stated or unstated) tolerance.  That is essentially the definition of a local 
coordinate system; the coordinate inverse is very nearly the same as (or identical to) the 
local tangent plane horizontal distance.   
 
Contact your state DOT for information on specific projects or local policies.  But, for a 
big picture overview, each reader is referred to  Appendix III of “Using GPS Results in 
True 3-D Coordinate System” published in the February 1993, issue of the ASCE 
Journal of Surveying Engineering, Vol. 119, No. 1.   In 1991 a questionnaire was sent to 
all 50 state DOT’s asking how they handle the grid/ground distance difference.  Replies 
from 46 out of 50 DOT’s are tabulated in that appendix.  An obvious conclusion after 
reading those replies is that there is little (or no) standardization of practice from one 
DOT to another.  Can that lack of standardization be traced back to the state plane 
coordinate system design flaw?  I believe it can.  Two sources of distance distortion 
must be considered when designing a local coordinate system – the grid scale factor 
and the elevation factor.  Both are mathematically well defined.  The grid scale factor is 
related to the permissible width of the zone and the elevation factor is determined from 
the elevation of the terrain.  Both should  be considered when designing a local 
coordinate system. 
 
At this point, two approaches should be considered.  One is the traditional 2-D map 
projection solution; the other is a comprehensive 3-D solution.  Both options are 
illustrated in Figure 6 of the February 1993, ASCE article.  The 2-D approach is the 
“project datum” box shown in the lower left of Figure 6 and is discussed here.  The other 
is the “P.O.B. datum” box, which will be the focus of a future article.  The 3-D approach 
will show that the coordinate inverse distance is identical to the horizontal tangent plane 
distance, HD(1), as described in,  “Computation of Horizontal/Level Distances,” ASCE 
Journal of Surveying Engineering, Vol. 117, No. 3, August 1991. 
 



© 2001 by Earl F. Burkholder - 3 - Las Cruces, NM 88003 

 

The 2-D map projection approach is described in  “Design of a Local Coordinate System 
for Surveying, Engineering, LIS/GIS,” which can be found in the March 1993 ACSM 
Journal of Surveying & Land Information Systems, Vol. 53, No.1, pages 29-40.  That 
paper contains a discussion of issues related to using state plane coordinates and the 
ground/grid distance difference.  It also contains specific equations, which can be used 
to develop a tailor-made local projection using either a Lambert conic conformal 
projection or a transverse Mercator projection.  Admittedly, the equations get a bit 
messy, but the procedures are explained, and examples are provided.  Additionally, a 
DOS-based, menu-driven program is available gratis from the author, which can used to 
create a local projection and compute coordinate transformations.  Regretfully, the 
software is designed for instructive purposes rather than for production efficiency.  The 
program is a very powerful tool but is not what one would call user-friendly.  To get a 
copy of the program, send an email to eburkhol@nmsu.edu and ask for “localcor.”  An 
execute file will be sent via return email. 
 
The reader should also be aware that local coordinate systems can also be established 
using programs available from various software and equipment vendors.  Just as there is 
no standardization between DOT’s, one may find differences in local coordinates as 
computed by various software packages – even given the same design parameters.  
The suggestion in such a case is to obtain a copy of the algorithm used in the program 
and to find out exactly how the program works.  Extensive testing may be required.  A 
good place to start is to compare results of a local projection which uses the same 
parameters as a state plane system with the results one gets using NGS developed 
software such as CORPSCON.  They should be identical if reference elevation is zero. 
 
The “localcor” program has been tested extensively against the published algorithms 
and results of other programs such as CORPSCON (results are identical when using a 
reference elevation of 0.0 meters).  The equations used in “localcor” are those listed in 
the ACSM paper.   While great effort has been made to insure the veracity of the 
“localcor” program, it is not warranted in any way.  Each user assumes responsibility for 
results obtained with the program. 
 
Notes: 
 

1. There is a typographical error in the equation for 0 on page 37 of the March 1993 

ACSM article.  The last part of the equation should be (U4 + U6 * cos2 0) and NOT 

(U4 + U6 + cos2 0).  The “plus” becomes a “times” and a matching closing 
parenthesis is needed. 

 
2. The “localcor” program also contains provision for establishing local projections and 

computing transformations on an oblique Mercator projection.  The algorithm for the 
oblique Mercator projection is not in the 1993 ACSM paper but is part of a paper, 
“State Plane Coordinates on the NAD 1983,” presented by the author at the 1985 
ASCE Convention in Denver, Colorado.  That paper contains the algorithm, 
flowchart, and FORTRAN 77 source code for computing transformations on three 
projections; the Lambert conic conformal, the transverse Mercator (including UTM), 
and the oblique Mercator projection.  A copy is available upon request from 
eburkhol@nmsu.edu. 
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