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Abstract: When using state plane coordinates or performing other geodetic 

computations, the ratio r/(r+h) is the elevation factor commonly used to reduce a 

horizontal distance to its sea level or ellipsoidal equivalent.  In most cases, an 

approximation is used for the earth’s radius while the value of elevation is usually 

much better known.  That is as it should be.  But the question examined in this 

paper is, “What is an acceptable approximation for the earth’s radius and how 

accurately must the elevation be known to assure sufficient precision in the 

answer?”  An equation that can be used to answer those questions is derived 

using concepts of error propagation. 

 

Introduction: 

A measured slope distance is typically reduced to horizontal using the slope distance 

and either: 1) the difference in elevation of the end points; or 2) the vertical angle (zenith 

direction) of the slope distance as measured from either or both ends (Burkholder 1991).  

Regardless of how the horizontal distance was obtained, the next step is to reduce the 

horizontal distance either to sea level or, being more specific, to the ellipsoid using the 

ratio: 

   
hr

rEF
+

=  where. . . .     (1) 

   EF = elevation factor,    

r    = approximate radius of the earth and  

   h   =  elevation of horizontal distance being reduced. 
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The question to be addressed is, “What is an acceptable approximation for the radius of 

the earth and how accurately must the elevation be known to assure adequate precision 

in the computed sea level or ellipsoidal distance?”  Tools to answers those questions are 

developed from the following error propagation equation:  
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 where U = f (X, Y, Z . . .);  X, Y, and Z are independent variables, and σX, σY and 

σZ are the standard deviations of the variables. 

The intent of this article is not to stipulate using one value in preference to another, but 

to identify a reliable tool that can be used to evaluate the impact of approximations made 

by the user. 

 

Elements: 

The radius of the earth and the elevation of the horizontal distance are the two elements 

used to reduce a horizontal distance to sea level.   It is left for the reader to decide which 

definition of horizontal distance will be used in the reduction.  Of the various definitions 

of horizontal distance given in Burkholder (1991): 

• HD(1), Figure 1a, is the simple right triangle component of slope distance. It is  

used extensively in practice and is sufficiently precise for many applications. 

• HD(2), Figure 1b, is the tangent plane distance between plumb lines.   

• HD(3), Figure 1c, is the chord distance between plumb lines.  It’s endpoints are at 

the same elevation and it is perpendicular to the plumb line only at the midpoint.  

• HD(4), Figure 1c, is the arc distance between plumb lines at the same elevation  

as the endpoints of HD(3). 
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As shown in Burkholder (1991), the differences between HD(2), HD(3), and HD(4) are 

miniscule.  If HD(1) is not precise enough, either HD(2), HD(3), or HD(4) can generally 

be used instead. 
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Figure 1, Slope Distance and Various Definitions of Horizontal Distance 

 

Notes with regard to the elevation factor elements are: 

1. When computing the elevation factor, earth’s radius is often taken to be 6,372,000 

meters or 20,906,000 feet.  Either value is acceptable and, as implied by rules of 

significant digits, is accurate to the nearest 1000 feet or 1000 meters.   

2. The earth is not quite spherical, but flattened at the poles.  Students of geodesy 

soon learn that the earth’s radius in the north-south direction changes from a 

smaller value at the equator to a larger value at the poles.  The geometrical mean 

radius of the earth at a given latitude is computed as: 

φ22
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sin1
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=  where, for GRS 1980 (and NAD83);  (3) 

  a   = semi-major axis (radius of equator) = 6,378,137.000 m 

  e2  = eccentricity squared = 0.00669438002290. 

  φ   = geodetic latitude.  
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Table1 lists values of geometrical mean radius for various values of latitude.  Increments 

of 5° are used except in those cases needed to match the approximate values. 

 

Table 1, Geometrical Mean Radius of Curvature at Various Latitudes 

 Latitude     Mean Radius         Mean Radius  
          (degrees)       (meters)     (U.S. Survey Feet) 
 
                 0        6,356,752.314   20,855,444.88 

        5  6,357,075.580   20,856,505.47 
        10  6,358,035.749  20,859,655.62 
       15  6,359,604.205  20,864,801.46 
       20  6,361,734.148  20,871,789.45 
       25  6,364,361.913  20,880,410.71 
       30  6,367,408.778  20,890,406.96 
       35  6,370,783.223  20,901,477.96 

       36-43-04  6,372,000.000  20,905,470.00 
       36-56-36  6,372,161.544  20,906,000.00 

      40  6,374,383.582  20,913,290.14 
      45  6,378,101.030  20,925,486.46 
      50  6,381,822.817  20,937,697.02 
      55  6,385,435.668  20,949,550.19 
      60  6,388,829.252  20,960,683.97 
      65  6,391,899.595  20,970,757.25 
      70  6,394,552.344  20,979,460.48 
      75  6,396,705.765  20,986,525.50 
      80  6,398,293.360  20,991,734.13 
      85  6,399,266.022  20,994,925.27 
     90  6,399,593.626  20,996,000.09 

 
 
 
 
3. Figure 2 illustrates the relationship of horizontal distance, sea level distance and  

ellipsoid distance.  It also shows that geoid height is the difference between the 

ellipsoid and sea level.  Historical practice has included reducing horizontal 

distances to sea level, but when working with state plane coordinates, or other 

geodetic computations, it is more appropriate to reduce horizontal distance to the 

ellipsoid.  Equation (6), derived in the next section, can be used to assist in deciding 
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whether it matters if one uses ellipsoid height or orthometric height in computing the 

elevation factor.  Additional material on elevations is found in Burkholder (2002). 
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       H  =  Orthometric height 
      (Nominally elevation) 
 
       h  =  Ellipsoid height 
         (From GPS data)  
 
       N  =  Geoid height 
    (From geoid modeling  
      or from h – H) 
 
 
       h  =  H  +  N 
 

 

 

Figure 2 Diagram of Elevation Reduction Factor 

Derivation: 

The derivation involves taking the partial derivatives of the elevation factor (EF) with 

respect to each of the two variables, earth radius, r, and elevation, h. 
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Now, substituting equations (4) and (5) into equation (2) along with appropriate standard 

deviations, the equation for the standard deviation of EF becomes: 
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Equation (6) is very powerful in that it can be used to compute the uncertainty (standard 

deviation) of the elevation factor for any combination of radius and elevation 

uncertainties selected by the user.  Two examples, one in English units and one in 

metric units, are given next. 

 

English units example: 

 Assume: r = 20,906,000 feet +/- 1,000 feet 

   h = 3,280 feet +/- 10 feet 

 Compute: 9998431319.0
280,909,20
000,906,20

==
+

=
hr

rEF  
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 000000478.010*28658.210*62848.5 1317 =+= −−
EFσ  

 

This means that a horizontal distance of 1000.000 feet reduced to the ellipsoid for these 

conditions computes to be 999.843 feet +/- 0.00048 feet.  Certainly the difference 

between horizontal and ellipsoid distance is significant, but the quality of the computed 
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result does not appear to suffer significantly from using an approximate earth radius (+/- 

1,000 feet) and an elevation known only to the nearest 10 feet.   

  

Metric Example: 

 Assume: r = 6,372,000 meters +/- 1,000 meters 

   h = 1,000 meters  +/- 10 meters 

 Compute: 9998430881.0
000,373,6
000,372,6

==
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=
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This means that a horizontal distance of 1000.000 meters reduced to sea level for these 

conditions computes to be 999.843 meters +/- 0.0016 meters.  Here too, the difference 

between horizontal and ellipsoid distance is significant, but the quality of the result does 

not appear to suffer significantly from using an approximate earth radius (+/- 1,000 

meters) and an elevation known only to the nearest 10 meters.   

   

Note in both examples that the contribution of uncertainty due to earth radius (first term 

under the square root symbol) is much smaller than the contribution due to uncertainty of 

elevation.  Also note, the examples are different in that a 10 meter uncertainty in 

elevation in the metric example is much larger than the 10 feet uncertainty for elevation 

in the English unit example. 
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Tabular Results – Metric: 

Table 2 includes representative values of EF at five different elevations for a variety of 

elevation uncertainties and assuming uncertainty of earth radius from 1,000 m to 20,000 

m.  The relative uncertainty of the elevation factor for each combination is obtained by 

computing the reciprocal of the tabular entry.  For example, the most precise entry is 

0.0000001570 (1:6,369,000) in the upper left corner and the least precise entry is 

0.0000157970 (1:63,300) in the lower right corner.  Although Table 2 can be quite useful 

for general circumstances, a specific answer for any combination selected by the user is 

obtained using equation (6). 

 

Table 2, Standard Deviations of Elevation Factors for Various Combinations 

    Elev.       Elev.           Radius Sigma     Radius Sigma             Radius Sigma   Radius Sigma 
    meters    Sigma              1,000 m           5,000 m  10,000 m      20,000  m      .      
 

100 1  0.0000001570 0.0000001574 0.0000001589  0.0000001645 
100 10  0.0000015693 0.0000015694 0.0000015695  0.0000015701 
100 50  0.0000078466 0.0000078466 0.0000078466  0.0000078467 
100 100  0.0000156932 0.0000156932 0.0000156932  0.0000156932 

             
500 1  0.0000001574 0.0000001686 0.0000001995  0.0000002920 
500 10  0.0000015692 0.0000015703 0.0000015739  0.0000015883 
500 50  0.0000078456 0.0000078458 0.0000078466  0.0000078495 
500 100  0.0000156912 0.0000156913 0.0000156917  0.0000156931 

           
1000 1  0.0000001588 0.0000001994 0.0000002920  0.0000005168 
1000 10  0.0000015691 0.0000015737 0.0000015881  0.0000016443 
1000 50  0.0000078444 0.0000078453 0.0000078482  0.0000078598 
1000 100  0.0000156888 0.0000156892 0.0000156907  0.0000156965 

           
2000 1  0.0000001644 0.0000002919 0.0000005167  0.0000009970 
2000 10  0.0000015692 0.0000015876 0.0000016438  0.0000018518 
2000 50  0.0000078421 0.0000078458 0.0000078573  0.0000079035 
2000 100  0.0000156839 0.0000156857 0.0000156915  0.0000157147 

           
4000 1  0.0000001851 0.0000005163 0.0000009963  0.0000019741 
4000 10  0.0000015705 0.0000016428 0.0000018506  0.0000025158 
4000 50  0.0000078376 0.0000078524 0.0000078985  0.0000080803 
4000 100  0.0000156743 0.0000156817 0.0000157048  0.0000157970 
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Conclusions: 
 
Conclusions and final comments are: 

1. The average earth radius commonly used is acceptable for all but the most 

demanding applications.  Values of earth radius in Table 1 go from 6,356,752 m 

at the equator to 6,399,594 m at the pole.  Using an average earth radius of 

6,372,000 m and an earth radius uncertainty of 20,000 meters, the right-most 

column of Table 2 includes all latitudes from S 65° to N 65°. 

2. The accuracy of the elevation factor is not very sensitive to elevation itself.  Table 

2 includes elevation factors for elevations of 100, 500, 1000, 2000, and 4000 

meters.  The differences in each column for a given elevation sigma are quite 

small. 

3. The accuracy of the computed elevation factor is affected by uncertainty in the  

elevation.  But the level of sensitivity appears to be rather low.  In fact, unless 

pursuing extremely accurate results, it appears one can use orthometric heights 

and ellipsoid heights interchangeably when making the elevation reduction.  That 

means geoid modeling for purposes of elevation reduction is often moot.  Table 2 

includes and shows the impact of elevation uncertainties up to 100 meters.  Few 

locations in the continental U.S. have geoid heights over 50 meters.   

4. Regardless of the values shown in Table 2, the accuracy of the elevation factor 

for any set of conditions can be readily computed using equation 6.  It is probably 

more important to document the assumptions and values used on a given project 

or line reduction than it is to use one particular value or another.    

5. Using the elevation factor is applying a systematic error correction.  If a 

systematic error is not identified and corrected, the default consequence is 

treating systematic error as part of the random error budget.  This paper treats 
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the quality of the elevation factor as a random error.  Nothing in this paper is 

meant to suggest that knowledgeable professionals should not evaluate 

systematic error sources and make the appropriate corrections. 

 

Symbols: 

 EF =  Elevation Factor  

 r = Radius of earth 

 h = Elevation of horizontal distance  

 a = Semi-major axis of earth 

 e2 = Eccentricity squared for the earth 

 φ = Geodetic latitude  
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