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Abstract 
 
Existing definitions of horizontal distance are used extensively and successfully. But in a broader context, 
traditional definitions can be ambiguous. Given those ambiguities, the goal of this article is to use the 
global spatial data model (GSDM) to bring more clarity to concepts of horizontal distance.  Horizontal 
distance is often defined as perpendicular to a plumb line at one point (in a flat plane). Or, horizontal 
distance may be defined as continuously perpendicular to the plumb line (ocean surface). A different 
issue, but closely related, is whether the plumb lines at either end of a horizontal distance are taken to 
be parallel or converging. Parallel plumb lines imply a flat Earth but, if the plumb lines are not parallel, 
what is the elevation of the horizontal distance? Higher elevations imply a longer horizontal distance. 
Finally, is a horizontal distance referenced to the plumb line or to the ellipsoid normal? Physical 
measurements are often referenced to the plumb line while computations using geospatial data are 
typically referenced to the ellipsoid normal. This article looks at horizontal distances computed from 
stored geospatial data with a focus on those options directly supported by the 3-D  GSDM.  
 
Key Words Horizontal Distance, Plumb Line, Ellipsoid Normal, Geometrical Geodesy, Earth-Centered 

Earth-Fixed (ECEF), Global Spatial Data Model (GSDM) 
 
Introduction 
 
Traditional concepts of horizontal distance enjoy near universal acceptance and remain valid in many 
applications. However, additional attention is warranted when working with 3-D digital spatial data - 
especially when viewed in the context of a more robust geometrical model. Continued use of a default 
definition may be acceptable although other options exist. Since geometrical circumstance and user 
preference are both variables, the choice of definition for horizontal distance, whatever it is, should be 
documented for the benefit of subsequent users. Clarity of such choices can be enhanced if horizontal 
distance is considered in the context of the 3-D global spatial data model (GSDM), Burkholder (1997) . 
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For local applications, the general presumption is that horizontal distance is related to ground level and 
to the local plumb line. For nominal distances, the right triangle component of a slope distance is used 
successfully as the horizontal distance – elevation is generally immaterial. The implicit assumption is that 
plumb lines at either end of a line are parallel and that the Earth is flat, see Figure 1. For longer lines, 
that assumption is not valid.  A better model accommodates converging plumb lines and provides the 
tangent plane distance between plumb lines, see Figure 2. And, for surveys involving significant 
elevation differences, standard practice is to reference horizontal distances to a common elevation. In 
such cases, the elevation of a horizontal distance should not be left to conjecture. 

 
        Figure 1       Figure 2 
     Right Triangle Component of Slope Distance    Tangent Plane Distance Between Ellipsoid Normals 
 
Six different definitions for horizontal distance were identified in Burkholder (1991). In that case, all six 
definitions were referenced to the plumb line and computation of horizontal distance was presumed to 
originate with physical measurements. In that article, the plumb line and the ellipsoid normal were 
taken to be coincident. In this article, the definition of horizontal distance is referenced specifically to 
the ellipsoid normal and horizontal distances are derived from rectangular X/Y/Z Earth-centered Earth-
fixed (ECEF) coordinates. Equations for computing various normal-based geometrical relationships are 
included in Appendix A. As before, the choice of definition of “horizontal” is left to the user. 
 
But, this article leaves a gap to be addressed by others. In the context of horizontal distances, what are 
the consequences, if any, of assuming that the plumb line is coincident with the ellipsoid normal?  Note, 
some of the following are plumb line-based and others are normal-based. 
 

• Electronic distance measuring instrument (EDMI) and total station measurements are plumb-line 
based. Traverses are observed, computed, and results are stored in a file. Those coordinate values 
are subsequently used to compute angles, distances, areas, and volumes.  
 

• GPS data are collected as either a single point position or as a vector between points. In either 
case, the GPS observations are reduced to ECEF coordinates or to ECEF differences before being 
expressed in a traditional normal-based coordinate system.  GPS results are normal-based. 
 

• Ray tracing and ray intersections are primary operations in photogrammetric mapping.  Although 
orientation of the camera is plumb line referenced, the extracted geometry is affected only 
slightly, if at all, by the direction of the local plumb line. Maps are compiled by fitting ray-tracing 
geometry and coordinate differences to pre-existing ground control points. 
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• In LiDAR and terrestrial scanning observations, the primary raw data are 3-D spatial distances to 
an object that returns the transmitted signal. Although directions are also observed, angular 
resolution of the scanner is generally considered subordinate to the observed distances. As in 
photogrammetric practice, maps (or digital point clouds) are compiled by fitting the observed 
distances and reduced components to independent (pre-existing) control. 
 

• Inertial measurements from gyroscopes and accelerometers are specifically oriented to the plumb 
line. But, those raw data are processed such that the horizontal results of an inertial survey are 
generally published as normal-based while elevations are published as plumb line-based.  
 

• Traditional leveling observations are directly associated with the local plumb line. It seems that 
the importance of elevation data justifies publication of a separate vertical datum (plumb line- 
based) rather than incorporating third-dimension observations into a normal-based 3-D database.     

 
Traditional horizontal distance expressions 
 
Burkholder (1991) identifies the following plumb line-based horizontal distance options: 
 

• HD(1) = the right triangle component of a slope distance. 

• HD(2) = the distance between two plumb lines in a plane tangent to the Earth at the instrument 
station. 

• (HD(3) = the chord distance between two plumb lines. The two end points have the same elevation 
and the chord is perpendicular to the vertical (plumb line) only at the chord midpoint. 

• (HD)4 = the arc distance along some level surface between two plumb lines. 

• HD(5) = the arc distance at mean sea level between two plumb lines. 

• HD(6) = the distance along the geodesic on the ellipsoid surface between two plumb lines. 
 

The intent in listing those six alternatives was to include options from approximate to precise. That is, 
from plane surveying, HD(1), to geodesy, HD(6). Numerical comparisons and graphs included in the 1991 
article show differences between the various options. The convention used then, and repeated here, is 
that the station occupied (instrument station) is referred to as the standpoint while the other end of the 
line (reflector) is referred to as the forepoint. An incidental issue is that foot units were used in the 1991 
article (either U.S. Survey or International). The GSDM uses meters exclusively – with an exception.  
When reporting distances computed from ECEF coordinates, the choice of units displayed is the 
prerogative of the user. The original distance answer is metric, but those metric values may be 
converted to other units as dictated by a given application – see the P.O.B. Datum option (page 6, 
Burkholder 1997). The underlying X/Y/Z values are metric and remain unchanged. 
 
Fundamental concepts and questions to be clarified 
 
While consensus on a unique definition of horizontal distance may not be possible, the following issues 
are “put on the table.” 
 

• Is horizontal distance perpendicular to the plumb line at a point or perpendicular to a surface at all 
points? Depending upon circumstances, each definition has been used. 

• In what cases is a flat-Earth assumption acceptable? That is, ellipsoid normals at the end points are 
assumed to be parallel. Some tolerance level may guide a choice - see Table 1 and Figure 6. 
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• If flat-Earth assumptions are not appropriate, then elevation is an attribute of horizontal distance. 

• What difference does it make if horizontal distance is referenced to the plumb line or to the 
ellipsoid normal? Although some may answer “none,” the contrary may be shown. 

• As a close approximation for short distances, horizontal distance can be taken to be a chord 
distance between ellipsoid normal. A more rigorously computed arc distance between points may 
be a better representation of “horizontal.” Either way, elevation is important. 

• What difference does it make, if any, whether horizontal distance is the result of a physical 
measurement or the result of an inverse computation between coordinates? The question really 
may be, “which is more ambiguous, the concept of “horizontal” or the definition of “horizontal”? 
 

Computing normal-based horizontal distance from ECEF coordinates 
 
This section identifies various distance computations based on X/Y/Z coordinates. As such, those results 
all come under the broad umbrella of a generic distance inverse in 3-D space – see Burkholder (2016). 
The Theorem of Pythagoras is used to compute a generic slope distance as: 
 

3– 𝐷 𝐷𝑖𝑠𝑡 =  √∆𝑋2 + ∆𝑌2 + ∆𝑍2 where     (1) 
 
   ∆𝑋 =  𝑋𝑓𝑜𝑟𝑒𝑝𝑜𝑖𝑛𝑡 −  𝑋𝑠𝑡𝑎𝑛𝑑𝑝𝑜𝑖𝑛𝑡      (2) 

∆𝑌 =  𝑌𝑓𝑜𝑟𝑒𝑝𝑜𝑖𝑛𝑡 − 𝑌𝑠𝑡𝑎𝑛𝑑𝑝𝑜𝑖𝑛𝑡      (3) 

∆𝑍 =  𝑍𝑓𝑜𝑟𝑒𝑝𝑜𝑖𝑛𝑡 − 𝑍𝑠𝑡𝑎𝑛𝑑𝑝𝑜𝑖𝑛𝑡      (4) 

 
Depending on the geometry of the standpoint and forepoint, several horizontal distance options can be 
obtained using equation 1. For example, if the ellipsoid heights of both standpoint and forepoint are the  

 
   Figure 3          Figure 4 

    Chord Distances at Standpoint and Forepoint  Arc Distances at Standpoint and on Ellipsoid 
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same, the result is HD(3), see Figure 3. If the ellipsoid height for both standpoint and forepoint is zero, 
the result is a chord distance on the ellipsoid.  As illustrated in Figure 4, the arcs of HD(4) and HD(6) can 
each be obtained using the standard chord-to-arc procedure, also described in Burkholder (2016). 
Computation of normal-based sea level arc distance, HD(5), is not addressed in this article. 
 
HD(1) is the right triangle component of a slope distance and used extensively in local applications. 
HD(1) is also the horizontal component of an observed GPS vector. The only difference (largely 
inconsequential) is that HD(1) in the 1991 article is plumb-line based while a GPS vector component is 
ellipsoid-normal based. Thus, the HD(1) similarity provides a convenient direct link between GPS 
surveying and plane surveying. The normal-based equations for computing HD(1) from a GPS vector or 
stored ECEF X/Y/Z coordinates are: 
 

  𝐻𝐷(1) =  √∆𝑒2 +  ∆𝑛2  where      (5) 
 
   ∆𝑒 =  − ∆𝑋 sin + ∆𝑌 cos        (6) 
   ∆𝑛 =  − ∆𝑋 sin cos  −  𝛥𝑌 sin sin  +  𝛥𝑍 cos    (7) 
 
  ΔX/ΔY/ΔZ are geocentric components of a GPS vector standpoint to forepoint. 

   and  are the latitude (north) and longitude (east) of the standpoint. 
 
Equation 5 is quite powerful, but it has limitations. How far can one push a right triangle horizontal 
distance before convergence of the ellipsoid normals becomes an issue?  It might not be significant for 
nominal distances but, the HD(1) distance standpoint to forepoint is not identical to the HD(1) distance 
from the forepoint to the standpoint.  That is because HD(1) lies in a tangent plane through the 
standpoint. If the computational direction is reversed, the latitude and longitude in equations (6) and (7) 
are not the same, the tangent plane is not the same, and the horizontal distance between points 
(forward and back) is slightly different . That difference is discussed later. So, the challenge now is to 
find a definition for horizontal distance that is the same (or very nearly so) in both directions. According 
to Armstrong et., al. (2017), a good approximation for a unique bi-directional horizontal distance is:  
 

𝐻𝐷 =  √(∆𝑋)2 + (∆𝑌)2 + (∆𝑍)2 − ∆ℎ2 where,   (8) 

   Δh  = ellipsoid height difference between standpoint and forepoint. 
 
Equation 8 is recognized as equation 1 modified by the ellipsoid height difference. All terms in 
equation 8 are squared which means it is immaterial whether any of those differences is positive or 
negative. The validity of equation 8 is confirmed later in this article even though it contains a 
geometrical imperfection; h1 is rarely, if ever, parallel with h2.  
 
But first, several questions, is there a practical distance limit to the use of equation 8 and what is the 
geometrical meaning of a “long” distance computed using equation 8? Those answers may also have an 
impact on one’s choice of a definition for horizontal distance.  Figure 5 shows a diagram for computing 
various distances – all using equation 1 based on geocentric X/Y/Z coordinate values for the numbered 
endpoints. The presumption is that a standpoint and a forepoint are the basis for subsequent 
computations. It is further presumed that the standpoint and forepoint have different ellipsoid heights. 
Using equation 1, a 3-D spatial (slope) distance is computed from the X/Y/Z coordinates of the 
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endpoints. As shown in Figure 5, ECEF coordinates for additional points on the ellipsoid normal are 
needed to compute additional distances using equation 1.  
 
As shown in Figure 2, Point 3 lies at the intersection of the tangent plane through the standpoint and the 
ellipsoid normal through the forepoint. The X/Y/Z coordinates for Point 3 are computed using the 
latitude and longitude of the forepoint but the ellipsoid height for Point 3 is the ellipsoid height at the 
standpoint plus the curvature offset at the forepoint. With X/Y/Z coordinates for both Point 1 and 
Point 3, the HD(2) horizontal distance is computed using equation 1.  See Appendix B for computing the 
curvature offset. Appendix A includes the equations for computing X/Y/Z coordinates from 
latitude/longitude/ellipsoid height (called a BK1 transformation) and for computing 
latitude/longitude/ellipsoid heights from X/Y/Z coordinates (called a BK2 transformation). 
 
The X/Y/Z coordinates of other points in Figure 5 are computed as: 
 
      Point 4 Defined by latitude/longitude at Point 1 and ellipsoid height at Point 2. 
      Point 5 Defined by latitude/longitude at Point 2 and ellipsoid height at Point 1. 
      Point 6  Defined by latitude/longitude at Point 1 and ellipsoid height of 0 m (on ellipsoid). 
      Point 7  Defined by latitude/longitude at Point 2 and ellipsoid height of 0 m (on ellipsoid). 

 
Figure 5, Diagram of Point Numbers 

 
With the X/Y/Z coordinate values of Points 1 - 7 in hand, equation 1 is used to compute: 
 
     HD(2) Tangent plane distance between ellipsoid normals. 
     HD(3a) Chord distance at standpoint ellipsoid height. 
     HD(3b) Chord distance at forepoint ellipsoid height. 
 
     HD(4) Arc distance computed from chord distance HD(3a) – Figure 4. 
     HD(6) Arc distance computed from ellipsoid chord between Points 6 and 7 – Figure 4. 
 
 The horizontal distance designations were chosen to be consistent with the labeling used in Burkholder 
(1991). As stated previously, HD(5) is not addressed in this article. 
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HD(3a) and HD(3b) are slightly different due to ellipsoid height differences. A unique horizontal distance 
between standpoint and forepoint can be computed as the mean of HD(3a) and H(3b). As it turns out, 
the mean of HD(3a) and HD(3b) is the same as a horizontal distance computed using equation 8. 
Incidentally, equation 8 is much easier to use than finding the mean of HD(3a) and HD(3b). The author 
has attempted, without success, to show a mathematical equivalence between the mean of HD(3a) and 
HD(3b) and the horizontal distance from equation 8. However, the numerical equivalency is shown in 
Table 1 and later in this article in the New Mexico Principal Meridian example.   
 
Consequence 
 
If the number of horizontal distance alternatives seems excessive, the reader can be assured that 
continued use HD(1) is justifiable in many cases. Table 1 was generated by tabulating values for various 
distance/vertical angle combinations and Figure 6 was developed by plotting associated ratio-of-  
precision isolines for 1:10,000, 1:20,000, 1:50,000, 1:100,000 and 1:400,000. Figure 6 parallels 
information shown in Figure 4 of Burkholder (1991) and provides a comparison of HD(1) with HD(2) for 
distances up to 5,000 meters. As an example, a survey having a nominal accuracy of 1:50,000 could 
absorb a horizontal distance systematic error of 1:100,000 without detrimental consequence. As such, 
limits of distance and vertical angle combinations can be readily deduced from the isolines shown in 
Figure 6.  Although not shown here, similar results could be developed for comparison of HD(1) with 
HD(3) or with a horizontal distance computed using equation 8.     
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Observations from Table 1 include 
 

1. HD(1) and HD(2) are co-linear. A decision to use HD(2) for horizontal distance as opposed to HD(1) 
may be influenced by the tolerance requirements of  a given application. Also, see qualifying 
comment in the “specific observations” section. 

2. There is very little difference between HD(2) and HD(3a). Since computing HD(2) involves first 
computing the curvature offset (more work), HD(3a) can often be used in place of HD(2). 

3. HD(3a) and HD(3b) are both chords, not really horizontal distances. But, the mean of HD(3a) and 
HD(3b) is numerically the same as the “horizontal distance” computed using equation 8. 

 
Figure 6 is a graph of ratio-of-precision isolines for various combinations of vertical angle/slope distance. 

 
Figure 6, Plot of Comparison of HD(1) Distance with HD(2) Distance 

  
 
Numerical Example 
 
The project shown in Figure 7 is Example 5 in Chapter 15 of Burkholder (2018). The equation 8  distance 
in that example is over 222 km and should not be called a horizontal distance.   
 
The New Mexico Initial Point (for the U.S. Public Land Survey System – USPLSS) is Point 201 and taken to 
be the standpoint. ECEF coordinates for 201 are as published by NGS (PID AI5439). Point 202 is the 
forepoint and lies on the New Mexico Principal Meridian.  It was established by an NMSU class project 
(see www.globalcogo.com/3DGPS.pdf) as reported in Example 4, Chapter 15 of Burkholder (2018). All 
ECEF values in this example are NAD 83 (2011). 
 

http://www.globalcogo.com/3DGPS.pdf
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 Initial Point - 201    SW Cor. Sec. 31, T23S-R1E - 202 
 X  = -1,533,309.884 m    X  = -1,568,698.064 m 
 Y  = -5,050,681.721 m    Y  = -5,167,107.065 m 
 Z  =  3,571,149.193 m    Z  =  3,385,214.088 m 

   = 34° 15’ 35.”94618 N     = 32° 15’ 24.”28892 N 

   = 106° 53’ 14.”96154 W     = 106° 53’ 16.”54133 W 
     = 253° 06’ 45.”03846 E        = 253° 06’ 43.”45867 E  

h = 1,475.929 m      h  = 1,259.566 m 

 
Figure 7 

Diagram of New Mexico Initial Point and SW Corner, Section 31, T23S-R1E 
New Mexico Principal Meridian 

 
Auxiliary points were computed using equations in Appendix A. 
 
 Point 203 computed using latitude/longitude of Point 201 and ellipsoid height of Point 202. 
 Point 204 computed using latitude/longitude of Point 202 and ellipsoid height of Point 201. 
 Point 205 computed using latitude/longitude of Point 201 and an ellipsoid height of 0 m. 
 Point 206 computed using latitude/longitude of Point 202 and an ellipsoid height of 0 m. 
 
                    Point 203  Point 204             Point 205     Point 206 
  
 X  = -1,533,257.938 m        -1,568,751.217 m          -1,532,955.528 m -1,568,388.631 m 

Y  =  -5,050,510.611 m        -5,167,282.144 m         -5,049,514.482 m    -5,166,087.830 m  
              Z  =  3,571,027.392 m          3,385,329.563 m          3,570,318.320 m  3,384,541.839 m 
 h  =          1,259.566 m       1,475.929 m            0.000 m    0.000 m  
 
Equation 1 was used in each of the following four computations. 
 
 3-D slope distance, 201 to 202 – obviously not horizontal  =  222,213.968 m 
 Chord distance at ellipsoid, 205 to 206     =  222,166.044 m 
 Chord distance 201 to 204, at ellipsoid height of 201, HD(3a)  =  222,217.645 m 
 Chord distance 202 to 203, at ellipsoid height of 202, HD(3b)  =  222,210.080 m  
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What is the “best” choice for horizontal distance between Initial Point and SW Corner Section 31? 
 
 Mean of chord distances 3a and 3b between ellipsoid normals  =  222,213.862 m 
 Horizontal distance 201 to 202 using equation 8    =  222,213.862 m 
 
Even with the excellent agreement of the equation 8 distance with the mean of the chord distances, 
that distance is too long to be called a horizontal distance. A better choice would be to determine the 
arc distance, either on the ellipsoid or at a mean ellipsoid height – both of those choices are 
documented in Example 5 (Burkholder 2018) and compared to the “horizontal distance” laid out by the 
original government surveyors.  
 
 Ellipsoid distance 201 to 202      =  222,177.307 m 
 Arc distance at mean ellipsoid height     =  222,225.128 m 
 Theoretical ground level distance, 23 townships, 6 miles per township     =  222,089.92 m. 
 
The 1973 BLM Manual stipulates that Principal Meridians are to be laid out within a tolerance of 7 links 
per 80 chains (0.07/80) or 1:1,143. The approximate ratio or precision for the data above is: 
 
   (222,089.92 m – 222,225.128 m) / 222,225.128 m  or  1:1,644 
  
According to these results, that portion of the New Mexico Principal Meridian was laid out within BLM 
tolerance. Incidentally, there is some pretty rough terrain in that 222-kilometer (138 mile) distance. 
 
An informative “aside” for this project compares the HD(1) distances standpoint to forepoint with the 
HD(1) distance forepoint to standpoint. As a matter of interest, those results are: 
 
 Initial Point to SW Corner of Section 31, 201 to 202,   HD(1)  =  222,176.131 m 
 SW Corner of Section 31 to Initial Point, 202 to 201,   HD(1)  =  222,183.686 m 
 
A legitimate question here is, “what is the significance of the difference and under what circumstances 
might one HD(1) distance (forward or back) be required over the other? The following section contains a 
recommended solution (for reasonable distances) – use HD(1) from the selected project point of 
beginning (P.O.B.) to each point in the project and use those tangent plane coordinate differences as 
plane coordinates for the project. Also see comment in specific observations. 
 

Another scenario 

The previous distance examples are all based on a point-pair combination. Another option involves using 
the P.O.B. Datum coordinates as described in Chapter 1 of Burkholder (2008 and 2018). That option of 
the GSDM fully supports traditional flat-Earth surveying practices without sacrificing geometrical 
integrity of 3-D spatial relationships. An example of a 2-D (land surveying) plat based on a 3-D GPS 
survey is described at http://www.globalcogo.com/3DGPS.pdf.  In this case, the user selects any point 
(generally a point local on the survey)  for the P.O.B. and computes local east and north differences from 
the selected P.O.B. to each and any other points in the project. Those local eastings and northings 
become local tangent plane coordinates. Those local coordinates support computation of unique local 
horizontal distances in that tangent plane and local azimuths with respect to the true meridian through 

http://www.globalcogo.com/3DGPS.pdf
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the designated P.O.B.  Example 4 on page 407 in Burkholder (2018) gives the step-by-step procedure for 
developing a 2-D plat based on a 3-D GPS survey. That Example 4 reports HD(1) distances at ground level 
of the P.O.B. without distortion. It also gives all azimuths with respect to true north meridian through 
the point selected as the P.O.B.  Figure 6 in this article provides a visual estimate as to the limit for which 
one might feel comfortable using those HD(1) distances. Significant differences in terrain heights can 
become a factor in making that decision.  
 
Specific observations 
 

1. Equation 1 computes the 3-D spatial distance.  It is simple, easy to use, and there is no distance 
limit, practical or otherwise, to computing 3-D spatial distances from ECEF coordinates. 
 

2. HD(1) is the simple right triangle component of a slope distance and is useful for both plane and 
GPS surveying within limitations of flat-Earth assumptions. The disadvantage is that a distance from 
“here” to “there” is very slightly different from the distance from “there” to “here.” But, that 
difference is not a disadvantage if using the P.O.B. datum coordinates (Burkholder 1997) as the 
basis for creating a 2-D plat of a survey. 

 
3. Equation 8 can be used to compute a unique bi-directional “horizontal distance” at the mean 

ellipsoid height of standpoint and forepoint for any line length.  But, the limit of practical use has 
not been established. At some undefined limit, the equation 8 distance fails to meet an intuitive 
definition of “horizontal distance.” 
 

4. The following are not obvious but need to be acknowledged and discussed as appropriate. 
 

a. Computation of “new” X/Y/Z coordinates (from either point-position or vector data) from 
ECEF components based on GPS or photogrammetric data does not involve local plumb line 
or gravity observations.  The definition of horizontal distance is moot. 
 

b. Local terrestrial observations in 3-D space may need to be modified from plumb-line-based 
to normal-based (using deflection-of-the-vertical data) but rarely are horizontal data 
primary to the determination of a “new” point. The 3-D position of a “new” point is 
computed from a Δe/Δn/Δu vector (with respect to the standpoint) rotated to ΔX/ΔY/ΔZ 
components.  Again, the definition of horizontal distance is largely moot. 
 

c. The user has various options available when computing horizontal distance from stored 
ECEF coordinates. There are no known universal criteria for determining when to use: 

 
i.) HD(1) – most common and enjoys near “universal” application. 
ii.) HD(2) – Rarely needed. Appropriately approximated by HD(3). 
iii.) The mean chord distance of HD(3a) and HD(3b) is obtained using equation 8. 

(This distance is “unique” between points, but its relevance is limited.)  
iv.) HD(4) for a specific ellipsoid height may have more relevance than chord HD(3). 
v.) HD(6) provides a link to precise geodesy computations on the ellipsoid.      

 
 
Overview observations 
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The GSDM (Burkholder 1997) has been identified an appropriate geometrical model for spatial data 
disciplines worldwide. All location information can be used efficiently within the context of the ECEF 
coordinate system. The GSDM is prefaced on the assumption of a single origin for geospatial data – 
Earth’s center of mass. Long-standing rules of solid geometry are applied in the context of the ECEF 
coordinate system and rules of error propagation provide the basis of the stochastic portion of the 
GSDM. This article uses the Theorem of Pythagoras to compute a distance between any two points 
having ECEF coordinates. Whether that distance is horizontal or not is determined by the geometry of 
problem and the choices of the user. Overview observations include: 
 

1. The GSDM embodies the true 3-D characteristics of digital spatial data while providing for 
simple efficient computation of distances. Choice of definition is the prerogative of the user. 
   

2. When working with spatial and geospatial data, the distinction between plumb-line-based 
data and normal-based data will, in the future, become more critical in formulation of 
policies governing efficient use of 3-D digital spatial data. 
 

3. Possibly the most important impact of this article is what was omitted – the role of gravity. 
That involves the difference between spatial and geospatial data. Is spatial data a sub-set of 
geospatial data (data with no gravity considerations) or is geospatial data a sub-set of spatial 
data (plumb lines are not parallel due to gravity)? Is seems that “georeferencing” is the 
acceptable discriminator between spatial and geospatial data. This author believes that 
oversimplification belies the important role of gravity. Future standards, specifications, and 
policy will need to be more specific about the difference gravity makes. 
 

4. An unintended consequence of using a map projection (i.e., state plane coordinates) is that, 
by default, a horizontal distance computed as an inverse of grid coordinates follows the 
curve of the projection surface. The projection surface of a transverse Mercator projection 
curves in the north-south direction while the projection surface of a Lambert conic 
projection curves in the east-west direction. In contrast with inverse distances computed 
from ECEF coordinates when using the GSDM, without elaborate corrections, such curvature 
precludes true 3-D geometrical integrity in many computations. 
 

5. A subsequent more theoretical paper on “models” is being developed to provide additional 
insight. Two important sources include Kuhn (1996) and Pruneau (2017). 

 
 
Corrections to information in Burkholder (1991) 
 
Note – The following two corrections apply to the information included in Burkholder (1991). 
 

A. Equation 8 on page 108 should read: 
 

  𝐻𝐷(4) =  (𝑅 +  ℎ1)  =   2  (𝑅 + ℎ1)  𝑠𝑖𝑛−1 (
𝐻𝐷(3)

2 (𝑅+ ℎ1)
)                                       

 
B. It is stated incorrectly on page 110, item 3, that HD(1) is co-linear with HD(3). In fact, HD(1) is 

co-linear with HD(2). 
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Material in this Appendix is a sub-set of the equations listed in Chapter 1 of Burkholder (2008 and 2018). 
 
I. Transformations between geodetic and geocentric coordinate values 

 
Using the global spatial data model (GSDM) requires transformation between geodetic latitude/ 
longitude/ellipsoid height and geocentric Earth-center Earth-fixed (ECEF) rectangular coordinates. These 
transformations both require a mathematical ellipsoid and a location for the point(s) being transformed.  
When using the GSDM, the transformation from geodetic to geocentric coordinates is referred to as a 
BK1 transformation while the geocentric to geodetic transformation is referred to as a BK2 
transformation. Equations for both BK1 and BK2 transformations are given in this section. 
 
For purposes of this example, the GRS 80 ellipsoid parameters are used (Burkholder 1984).  Other 
ellipsoids such as the WGS 84 can also be used. Selection of the appropriate ellipsoid is the responsibility 
of the user.   
 
GRS 80:  a = 6,378,137. meters exact 
  1/f = 298.2572221008827 
  e2 = 2 f - f  2 =  0.0066943800229034  
 
BK1 Transformation: Geodetic to Geocentric 
 
     Input: Ellipsoid parameters, a and e 2 

Geodetic latitude, north is positive and south is negative    

  Geodetic longitude, east is positive and west is negative     
  Ellipsoid height in meters, positive is above ellipsoid and negative is below h 

 
    Equations 

  𝑁 =  
𝑎

√1−𝑒2 𝑠𝑖𝑛2 ∅
        (A1) 

 
  𝑋 = (𝑁 + ℎ) cos ∅ cos        (A2) 
 
  𝑌 =  (𝑁 + ℎ) cos ∅ sin        (A3) 
 
  𝑍 = (𝑁[1 − 𝑒2] + ℎ) sin ∅       (A4) 
 
 
BK2 Transformation: Geocentric to Geodetic 
 
   Input:  Ellipsoid parameters, a and e 2 
  X/Y/Z geocentric coordinates in meters 
 
   Equations: 

   =  𝑡𝑎𝑛 −1  (
𝑌

𝑋
) east longitude with due regard to quadrant.  (A5) 



15 
 

  ∅ =  𝑡𝑎𝑛−1 [
𝑍

√𝑋2+ 𝑌2
 (1 + 

𝑒2 𝑁 sin ∅ 

𝑍
)]       (A6) 

 

Equation A6 is closed form but must be iterated because  appears on both sides of the 
equals sign. This is not a problem but can be a nuisance. An iteration example is given 
on page 161 of Burkholder (2018) followed immediately by a non-iteration solution of 
the same problem. Other legitimate non-iterative solutions are readily available – see 
for example page 77 of Meyer (2010). 
 
After equation A6 is solved, the ellipsoid height can be found 
 

ℎ =  
√𝑋2+ 𝑌2

cos ∅
− 𝑁        (A7) 

 
The choice of using an iteration or otherwise for performing a BK2 transformation is left 
to the user. In either case, the user should also employ a “confidence builder” as needed 
to verify integrity of solution. That is, use the values found in a BK2 solution to “go back” 
with a BK1 transformation.  The result should come out to be the same as values input 
into the BK2 solution.  

 
BK3 and BK4 Transformations: 3D version of Geodetic Forward and Inverse Computations 
 
  BK3 (forward)  𝑋2 =  𝑋1 + ∆𝑋      (A8) 
     𝑌2 =  𝑌1 + ∆𝑌      (A9) 
     𝑍2 =  𝑍1 +  ∆𝑍      (A10) 
 
  BK4 (inverse)  𝛥𝑋 =  𝑋2 − 𝑋1      (A11) 
      𝛥𝑌 =  𝑌2 − 𝑌1      (A12) 
     𝛥𝑍 =  𝑍2 − 𝑍1      (A13) 
 
BK8 and BK9 Transformations: Rotations between local and geocentric perspectives 
 
  BK8 (geocentric to local)  

𝛥𝑒 =  −∆𝑋 sin ∅ +  ∆𝑌 cos       (A14) 
𝛥𝑛 =  −∆𝑋 sin  ∅ cos  − ∆𝑌 sin ∅  sin + ∆𝑍 cos ∅   (A15) 
∆𝑢 =  ∆𝑋 cos ∅ cos +  ∆𝑌 cos ∅ sin  +  ∆𝑍 sin ∅   (A16) 

 
  BK9 (local to geocentric) 
   ∆𝑋 =  −∆𝑒 sin −  ∆𝑛 sin ∅ cos  + ∆𝑢 cos ∅ cos    (A17) 
   ∆𝑌 =     ∆𝑒 cos  − ∆𝑛 sin ∅ sin  + ∆𝑢 cos ∅ sin    (A18) 
   ∆𝑍 =                           ∆𝑛 cos ∅           +  ∆𝑢 sin ∅     (A19) 
 
  Note: latitude (+N and -S) and longitude (+E and –W) are at standpoint. 
 
Reference 
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Computing the curvature offset 
 
The difference between a tangent plane and a level surface is derived here. With reference to the 
diagram below, the curvature offset, C, is found from the underlying radius of the Earth, R, and the 
distance, D, from tangent point to location of offset. The right triangle theorem of Pythagoras and an 
incidental approximation are used as follows: 

 
Using Pythagorean Theorem, 
 
(𝑅 + 𝐶)2  =  𝑅2 + 𝐷2 
 

𝑅2 + 2 𝑅 𝐶 +  𝐶2 =  𝑅2 +  𝐷2 
 
2 𝑅 𝐶 =  𝐷2 − 𝐶2 
 
But, C 2 is much smaller than D 2 and can be 
discarded.  Therefore,  
 

𝐶 =  
𝐷2

2 𝑅
      R for Earth ≈ 6,371 km 

 
 


