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ABSTRACT

The Michigan Coordinate System, which utilizes three Lamb-
ert Conic Conformal Projections, was formally adopted by
the Michigan Legislature in 1964, The projections are
based on the Clarke Spheroid of 1866, modified to place the
reference surface at an elevation of approximately 800 feet
above sea level., This was done in an effort to eliminate
the need for the sea level reduction on most surveys since
most of the land surface in Michigan is not far from the
800 foot elevatiion. When the sea level reduction is elim-
inated, the grid distance becomes the product of the hori-
zontal ground distance and the scale factor. However, if
one computes the scale factor for a point in Michigan ac-
cording to the formula found in C&GS Publication 62-4,
"State Plane Coordinates by Automatic Data Processing", or
if one uses a calculator or a computer programmed to use
the same formula, the: result is not the same as is found
in the "Plane Coordinate Projection Tables" for the State
of Michigan. The published formula gives a scale factor
which is valid on the sea level reference surface while the
Michigan projection tables give the correct scale factor
for the reference surface at the 800 foot elevation. The
formula can be easily modified to give the correct scale
factor; however, either scale factor will work if used in
conjunction with the proper sea level factor. A similar
problem is encountered in the Michigan Lambert zones when
one attempts to use the constant "L_" from Publication 62-4
for "k," in the formulas for comput§ng scale factors from
state plane coordinates as given by Professor Ralph Moore
Berry in 1972, Again, correct determination of the Mich-
igan scale factor is assured by using the correct constants
in the published formulas.
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DEFINITIONS

Sea level factor - that factor by which a short horizontal
ground distance is multiplied to determine the cor-
responding distance on a reference surface. In this
paper two reference surfaces are considered, the sur-
face of the Clarke Spheroid of 1866 and the Michigan
Spheroid. The difference between them is approx-
imately 800 feet in elevation.

Scale factor - that factor by which a distance on a refer-
ence surface (spheroid) is multiplied to determine
the corresponding distance on the projection surface.

Grid factor - the product of the sea level factor and the
scale factor. The grid factor is constant for a
given spheroid, zone, elevation and location.

These definitions are intended to be consistent with,
although not as: inclusive as, the definitions for the same
terms as found in, "Definitions of Surveying and Associated
Terms", [7].

INTRODUCTION

The geometry of the distance reduction for both the sea
level reference surface and the 800 foot elevation refer-
ence surface is shown in Figure C1 where the horizontal
ground distance, D1, is reduced to D2 and Dé by

Al D
- o 1 B
Reference surface [ ~-— Ground
of Michigan h D} ‘“\Nﬁf_;urface

Spheroid
D2

VR X\ Dy NN

Reference surface Projection
of Clarke Spheroid R surface, Grid
of 1866 L

NOTE -

The grid distance, D3,
is not a geometrical
projection of either
Dy or Dé, but is com-
puted using the con-
straint of conform-
ality.

Figure Ne. C1 Distance Reductien frem Greund te Grid
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2 =Dy *RJ/(R, + 1) (1)

o
[}

*
> =D, (Re + 800)/(Re + h). (2)
The reduction of the distance on the reference surface to
its corresponding grid distance, D3, on the projection
surface is given by;

]

D, = D, * SFg = D, * SF, where, (3)

D1 = the horizontal ground distance between the
plumb lines at points "A" and "B",

D2 = the horizontal ground distance reduced to
the surface of the Clarke Spheroid of 1866,

Dé = the horizontal ground distance reduced to
Michigan Spheroid.

Re = the radius of curvature of the spheroid at

a given latitude, often taken to be
20,906,000 feet, but see equations (10)&(13).
h = the height of the horizontal ground distance
above the Clarke Spheroid of 1866,
Dg = the grid distance on the projection surface,
Sgs = the scale factor for a point on the sea
level reference surface, Clarke's Spheroid.
SFe = the scale factor for a point on the elev-
ated reference surface, the Mich. Spheroid.

In equation (1) the sea level factor is unity when h = O,
but in equation (2) the sea level factor is unity when
h = 800 feet. The distance on the reference surface is
either longer or shorter than the corresponding horizontal
ground distance depending on whether the ground elevation
is below or above the reference surface,

Substituting equations (1) and (2) into equation (3) gives;

Re Re + 800
D3=D1*(Re+h)*SES=D1* m)*SFe (%)

from which the grid factor is determined by}

D, Re R, + 800
e (g ) * St = (F—q ) * 5P, (5)

and the ratio of the scale factors is given by;
SFg/SFe = (Rg + 800)/Rg. (6)

However, in determining the size of the Michigan Spheroid,
the ratio in equation (6) was held to be 1,0000382 exactly
(page 1 of [10]). Hence equation (6) can be rewritten as;

SFg = 1.,00003820 * SFe. (7)

The purposé of this paper is to:

1. show that the scale factors obtained in Michigan
by using the formula in Publication 62-4 (page 4
of [5]) differ from the scale factors listed in
the projection tables by a factor of 1.00003820,



2., analyze the reason for the discrepancy.
3. demonstrate proper use of the Michigan scale factor,

4, show how scale factors in Michigan can be computed
correctly from state plane coordinates using the
formulas given by Berry [h].

BACKGROUND

The surface of the Earth is approximated by rotating an el-
lipse about its minor axis. The ellipse shown in Figure C2
represents a meridian section of the Earth. The size and
shape of the Michigan Spheroid are specified by the length
of the semi-major axis, a = 20,926,631.530789 American Sur-
vey feet, and the eccentricity, e = 0.08227 18542 23003 8
(page 1 of [10]). The location of a point on a meridian is
specified by its latitude, @, or by its co-latitude, P =
90°- ¢. Other quantities which are derived from these are;

b = the semi-minor axis of the ellipse.
M = the radius of curvature in the meridian section.
N = the radius of curvature in the prime vertical,

perpendicular to the meridian section.

Rg = the geometrical mean radius of curvature for the
surface of the spheroid at a given latitude.

b2 = a® * (1 - e2)

M = a* (1-e2)/(1 - o2 sin2g)3/2 (8)
N = a/(1 - e2 sin?g)? (9)
R, = (M*N)Jf = (a * (1-e2)i’)/(1-e2 sin?g@) (10)

~

, equator *
S~ a -

SP

Figure No, C2 Elements in the Meridian Section Ellipse
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The North American Datum of 1927 (NAD 1927) is the nation-
al reference for the horizontal.control network which de-
fines the coordinates used in the state plane coordinate
systems. The NAD 1927 is, in turn, computed on the Clarke
Spheroid of 1866. However, in an effort to simplify com-
putations by eliminating the need for the sea level reduct-
ion on most surveys, the three Michigan Lambert projections
were defined on a spheroid having a reference surface ap-
proximately 800 feet above the surface of the Clarke Sphe-
roid of 1866. This was achieved by multiplying the semi-
major axis of the Clarke Spheroid by 1.0000382 (exact) and
holding the eccentricity unchanged [9] [10].

Table C1 shows a comparison of the ellipsoidal parameters
and derived values for "b" and for "Rg" at the central par-
allel, ¢°, of each of the three Michigan zones. Although
the values are listed for both spheroids to show the diff-
erence, the values of the Michigan Spheroid should be used
in all state plane coordinate computations in Michigan.

TABLE C1 COMPARISON OF SPHEROIDS (Part 1)

Clarke, 1866 Michigan Ratie Difference
a 20,925,832.,16' 20,926,631.53 1.00003820  799.37
e 0.082271854223 0.082271854223 1.,00000000 none

b 20,854,892,01' 20,855,688.67° 1.00003820 796.66

South Zone, @, = 420 53' 061055446
R, 20,920,471.45' ~ 20,921,270.62' 1.00003820  799.17

Central Zone, @, = 4u4° 56' 367092428 :
R, 20,925,571.01" 20,926,370.37" 1.00003820  799.36

North Zome, @, = 46° 17' 070101225
R, 20,928,899.07° 20,929,698.56 1.00003820 799.49

ANALYSIS OF SCALE FACTOR FORMULA

The formula for the scale factor in a Lambert Zone as given
by Claire in "State Plane Coordinates by Automatic Data
Processing” (page 4 of [5]) is;

Lg * Ry * (1 - 0.0067686580 * sin2¢)%
20,925,832.16 * cos @
which can be restated as;
Lg * Ry * (1 - e2 » sin2¢)%
“a * cos @

k =

(11)

k =

, where (12)

L6 = the projection constant,,e, computed from the
basic equations for the Lambert projections with
two standard parallels.(page 11 of [12]).

the map radius of a given parallel., This value
is tabulated for each minute of latitude in the
projection tables,

the latitude of a given point.

0.0067686580, the square of the eccentricity of
both spheroids, Clarke 1866 and Michigan,
20,925,832.16 feet, the semi-major axis of the
Clarke Spheroid of 1866,

N

®
N
o

)
n
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When the value of "a" of the Clarke Spheroid of 1866 is
used in equation (12) instead of the value of "a" for the
Michigan Spheroid, an erroneous scale factor is obtained.
Since the ratio of the two values of "a" is 1,0000382, the
resulting scale factors are of the same ratio. The cor-
rect scale factor is applicable to the reference surface
at the 800 foot elevation and agrees with the scale fact-
ors in the projection tables [10]. By equation (7) the
erroneous value of the scale factor is applicable to the
sea level reference surface,

CHOOSING THE SEA LEVEL FACTOR

The sea level factor is determined from the elevation of

a point and the radius of curvature of the spheroid at

the same point. As mentioned earlier the value of Ry is
often taken to be 20,906,000 feet, although it could be
computed using equation (10). However, since the ratio

in equation (6) was held to be 1.0000382 exactly, a value
of R, for the entire state is obtained by solving equation
(6) for Rg.

R, = 800/(1.0000382 - 1)

20,942,400 feet (13)
The values of R, at the central parallel of each of the
three Michigan zones are listed in Table 1, These values
of Rg could also be used.

The grid factor is defined as the product of the scale
factor and the sea level factor, but since the grid
factor is also the ratio of the grid distance to the
ground distance, it remains constant for a given locat-
ion and elevation. Thus, it is a matter of choice
whether one uses the correct scale factor at the 800 foot
elevation with the elevated sea level factor, SLFg,

Re + 800 20,943,200
SLFe = —R_+® = 320,942,400 + & (14)

or if one uses the erroneous scale factor as computed by
the formula in Publication 62-4 with the conventional sea
level factor, SLFg,

Ry 20,942,400 (15)

Sl¥g = R, + b~ 20,942,500 + n’

Note that equation (14) reduces the horizontal ground
distance to the 800 foot elevation and that equation (15)
reduces the horizontal ground distance to sea level.
Thus, when the ground elevation is acceptably near the
800 foot elevation, equation (14) becomes unity and the &
grid factor equals the correct scale factor,
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EXAMPLE OF GRID FACTOR COMPUTATION

‘The following is an example of determining the grid factor
in Michigan at a latitude of 45° and at an elevation of
1200 feet above mean sea level. The scale factor formula
given in Publication 62-4 and restated in equation (12) isj;
* * - o2 * sin2gd)1/2
e Lg * Rpm (1 e sin2g) e
a * cos @

Lg = 0.7064074100 (central zone) page 7 of [10]
R, = 20,981,064.925 page 20 of [10]
e2 = 0.006768657997 Table 1
a = 20,926,631.53 (Michigan) Table 1
a = 20,925,832.16 (Clarke, 1866) Table 1

Using the Michigan Spheroid value of "a", k isj;

(0.706uo7h1oo)(20981o6l+.925)(J-0.006768657997*sin2h5°)1/2
20,926,631.53 * cos 450

14,796,078.60 _ .
k = 3 9736506 = 0.9999131966 (correct). (16)

Using the Clarke Spheroid of 1866 value of "a", k is;

(o.7oého7u1oo)(20981064.925)(1-0.006768657997*sin2h5°)’/2
' 20,925,832.16 * cos 450

_ 14,796,078.60 _
k = 7rf%%zf7%77§3 = 0.9999513933 (erroneous).(17)

The elevated sea level factor by equation (14) is;

Re + 800 _ 20,943,200 _
SLF, = ST = 50.955.606 " 0.9999809011  (18)

and the conventional sea level factor by equation (15) is;

Re 20,942, 400
SLFs = §3w = 20,943,606 = O0+9999427033 (19)

The grid factor, being the product of the scale factor and
the appropriate sea level factor, can be obtained by using
either scale factor. The correct scale factor at the 800
foot reference surface (16) times the elevated sea level
factor (18) is;

GF = (0.9999131966)(0.9999809011) = 0.9998940994 (20)
and the erroneous scale factor (17) times the conventional
sea level factor is;

GF = (0.9999513933)(0.9999427033) = 0.9998940994 (21)
Although the same grid factor was obtained separately using
both scale factors, it will be shown in the next section

that there is only one "correct" scale factor. It is recom-
mended that the correct scale factor be used in all cases,
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FURTHER ANALYSIS OF THE SCALE FACTOR FORMULA

The analysis of the scale factor formula is not complete
until each term in the equation is examined and until it is
assured that all spheroidal differences have been taken
into account. Investigating equation (12) term by term, Lg
is derived by Thomas (page 117 of [12]) and shown by Berry
[3] to be;
* *
L = 1n (Ng sin Pg / Nn * sin Pn)’ — (22)
1n tan(Zg/2) - 1n tan(2,/2)

Ng = the raﬁius of curvature in the prime vertical at
the south standard parallel,

Np = the radius of curvature in the prime vertical at
the north standard parallel.

Ps = the colatitude of the south standard parallel.

Pp = the colatitude of the north standard parallel.

25 = the conformal colatitude of the south standard
parallel.

Z, = the conformal colatitude of the north standard
parallel.

The conformal colatitude which appears in the denominator
of equation (22) is derived by Thomas (page 87 of [12]) as;

e/2
tan(z/2) = tan(P/2) * [} = : : ZZ: ;] i . (23)

When the eccentricity, e, is held constant the conformal
colatitude is independent of the semi-major axis, a, of the
spheroid.

Considering the numerator of equation (22) and recalling
from equation (9) that,

N = a/(1 - e® * sin2g)"/2 (24)
the numerator of equation (22) becomes;

1 a * sin Pg / a * sin Pp q
- .
(1 - o2 » sin28)1/2 " (1 - 62 * sin2g,)/?|

sin Pg (1 - e2 = Sin2¢n)1/2
= 1ln ry P * 1/
sin Pn (1 - e2 * sin2¢s) 2

(25)

which is also independent of the semi-major axis, ™a", when
the eccentricity is held constant. Since the numerator and
the denominator of equation (22) are both independent of
the semi-major axis of the spheroid, the term, Lg, is also
independent of the semi-major axis when the eccentricity

is held constant.

Next, consider the map radius, Rp, which according to Adams
and Claire (page 6 of [2]) is;

R, = K * (tan z/2)L6 (24
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where K is the map radius of the equator as shown by Berry
[3] and is computed by;

% Ng * sin Pg Np * sin Pp s (27)

Lg * (tan 2g/2)L6 Lg * (tan 2,/2)"6

Substituting for "N" from equation (9),

N a * sin Pg (28)
(1 - 2 » cosZPs)1/2 * Lg * (tan Zs/2)L6.

Substituting equation (28) into equation (26),
a * sin Pg * (tan z/2)L6

Bm = 1/2 g’
(1 - e2 » coszPs) * Lg * (tan ZS/Z)

(29)

Substituting equation (29) into equation (12), the scale
factor becomes;
Lg * a * sin Pg * (tan z/2)L6 * (1 - e2 sin24g)

-

k = Te T
Lg * a ¥ cos # * (tan 2g/2) * (1 - e2 cos?pg)?

sin Pg * (tan z/2)L6 * (1 - 2 sin2¢)1/2

cos @ * (tan Zg/2)L6 * (1 - e2 cos2pg)1/? (30)

which is also independent of the semi-major axis for a
given eccentricity. The scale factor depends only on the
latitude of a given point once the eccentricity of the
spheroid is determined and the location of the standard
parallels is selected. Therefore, there is only one "cor-
rect"™ scale factor for a given latitude in a given Michigan
Lambert zone. Although equation (30) is not very efficient
for routine computation of the scale factor, the results
from equation (30) are consistent with the scale factors
published in the projection tables [Hﬂ ¥

DETERMINATION OF THE MAPPING RADIUS, Rp

The value of the mapping radius can be computed directly
using equation (26)., However, eleven significant figures
are required to get Ry correct to three decimal places of
feet, Since the tenth significant figure of some calcula-
tors is not to be trusted, it is even more important to use
another method to compute Rp. Rather than "looking it up
in the tables", Adams and Claire [2] developed a way to
compute the distance from the central parallel which is a
much: smaller number. This method is used by Claire in
Publication 62-4 as;

=L Ls |1 A2 .~ (=) L B g
ol Rl [ + (38 [9 (108) 1% 7 (108) 1ﬂ
where, (31)
s = 101.279&065[60 * (Ly-g') + Lg - 8" + [1052.893882
- (4.483344 - 0.023520 cosZ2g) cosz¢] sing cos¢],

the length of the meridian arc from ¢° to @ and, (32)
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L3 = the map radius of the central parallel, ¢°.
L5 = the scale factor along the central parallel.
L7 = the degrees and minutes portion of the rectify-

ing latitude for the central parallel (minutes).

L8 = the seconds portion of the rectifying latitude
for the central parallel,

coefficients for the series expansion of the
L10 = change in the map radius between @ and @
as given in equation (403) of Thomas [12?.

L1y =
@t = the degrees and minutes portion of @ (minutes).
@g" = remainder of @ expressed in seconds.

FigureC3shows some of the elements listed above on a dev-
eloped Lambert conic conformal projection and helps to il-
lustrate the method used by Claire. Instead of computing
R, directly, he starts with Ry, the mapping radius of the
central parallel of the zone and adds algebraically (north
is minusg the distance along the central meridian to the
parallel of latitude which goes through a given point.

The concept of a rectifying sphere is used in equation (32)
to determine the meridian arc distance between and @,.
A rectifying sphere is a sphere which has the same circum-
ference as the ellipse of a meridian section of a sphereoid
On a sphere the latitude increases linearly with the arc

o
8
B g
= B
i & (n
-
ool F
el % P(x,¥)
L & 8. Pland
s s * LS * £(s)
Céntral | Parallel Agf
S Yo’

Latitude | of Origin

\ Equator

Figure No, €3 Developed Lambert Conic Conformal Projection
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distance, However, on an ellipse the relationship is more
complex. Adams (Appendix of [1]) derived the relationship
between the geodetic latitude, @, and the rectifying lat-

itude,w, and Claire (page 42 of [5]) restates it as;

w" = #" - (10527893882 - (L.48334lL
- 0.023520%cos2@)*cos?@)*singd*cosd (33)

The numerical values in equation (33) were determined using
the eccentricity of the Clarke Spheroid of 1866. However,
since the Michigan Spheroid has the same eccentricity, the
rectifying latitude for a given geodetic latitude is the
same on either spheroid.

By equation (32) the meridian distance, s, is the product
of the length per second of arc times the number of seconds
of arc of rectifying latitude which corresponds to the in-
terval of geodetic latitude, @o - #. The seconds of rect-
ifying latitude is given by equation (33) and Claire (page
43 of [5]) gives the quantity. 101.2794065 as ", ., . the
length, in feet, of one second of arc on a sphere whose
circumference equals the meridional arc of the Clarke 1866
ellipsoid." A different length factor is required for use
with the Michigan Spheroid which has a longer meridional
arc,

Since an ellipse is symmetrical to both axes, the length of
an ellipitical quadrant is equal to the length of a quad-
rant of its rectifying sphere. The length factor is com-
puted by dividing the ellipitical quadrant arc by 32,400
seconds' per quadrant. Adams (page 122 of [1]) gives the
length of a meridian arc of an ellipse as;

# g .
M = a (1 - e2) O YT (34)
(o]

which, when evaluated for limits of 0° to 90° with e? =
0.006768657997 and using the formula given by Clark (page
Los of‘[G]) and coefficient for e8 as given by Jordan
(page 67 of [8]), gives;

s, (0° - 90°) = 1.568134898 * a, (35)

Since equation (35) is linear in "a", the resulting length
factor will be of the same ratio as the values for the
semi-major axis of the two spheroids., Table C2 gives a com-
parison of the values for the meridian quadrant and the
length factor for both spheroids.

TABLE C2 COMPARISON OF SPHEROIDS (Part 2)

Clarke, 1866 Michigan Ratie Difference
a, (Table 1) 20,925,832.16' 20,926,631.53' 1.00003820 799.37!
s, (0° - 50°) 32,81L4,527.69" 32,815,781.20! 1.00003820 1253.51"

length factor 101.2794065'/" 101.2832753'/"  1.00003820 .0038688!/"
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Since the distance "s" as given by equation (32) uses the
length factor for the Clarke Spheroid of 1866, the value

of "s"™ will be too small by a factor of 1.00003820 when
used in any of the three Michigan Lambert zones, Claire
circumvents the problem by using the "sea level" value of
the scale factor of the central parallel, Ls, in equation
(31) which is too large by a factor of 1.00003820 (see eq-
uation (7)). Thus, the product of "s*Ls" in equation (31)
is unchanged and the same formula can be used for the Mich-
igan zones as is used for Lambert zones in other states.
Claire's value of L5 is to be used with the length factor
for the Clarke Spheroid of 1866, but the "correct" scale
factor for the central parallel of the zone is to be used
with the length factor for the Michigan Spheroid. The cor-
rect scale factor for the central parallel of each Michigan
zone and Claire's value of Ls are listed in TableC3,

TABLE €3 COMPARISON OF CENTRAL PARALLEL SCALE FACTORS

Correct Scale

Factor @ @o

Claire's Ls

Ratio

South: Zone
Central Zone
North Zome

0.99990 68822
0.99991 27095
0.99990 28379

0.99994 50783
0.99995 09058
0.99994 10344

1.00003820
1.,00003820
1.00003820

Formulas for the constants, Lg, Lip, and Lyq7 in equation
(31) are derived by Thomas [12] and restated by Claire [5],

1
Ly = ¥R, FEC " 1016 (36)

(5 * Ro = 4 * Ng) * tan g )
Lio = > 20 ° x 10211» (37)
24 * RZ * N2
* tanl
Lig = 128 * R inN * 10329 where (38)

Ro = M = the radius of curvature in the meridian
section at the central parallel.

o = N = the radius of curvature in the prime ver-
tical at the central parallel,

Although these constants should be computed using the value
of "a" for the Michigan Spheroid, it turns out that the
difference in Ry caused by using Claire's constants, which
are computed on the Clarke Spheroid of 1866, is less than
0.01 foot at a distance of 500,000 feet from the central
parallel. As one gets closer to the central parallel, the
difference becomes even smaller., The values of Lg, L4q,
and' Ly for each Michigan zone are listed in Table G4 for
both spheroids., Claire's values from Publication 62-4 are
also listed, Since the difference is so small, either set
of constants can be used; however, use of the correct con-
stants is recommended,

Since the method of computing Ry used by Claire gives the
same value as one obtains by using equation (26) little
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harm would have been done if the value of Lz would have

been noted as not being the scale factor of the central
parallel for the three Michigan Lambert zones. However, as
noted in the next section, proper use of L5 is crucial in det-
ermining the correct scale factor from state plane coordin-
ates,

TABLE C4 COMPARISON OF CONSTANTS Lg, Lio, AND Lqq

Clarke, 1866 Michigan Claire 62-4

South Zone

Lg 3.808078 3.80779 3.80808

Lio L,157064 L,15659 L4,15706

L11 32.89009 32.8851 33
Central Zone

Lg 3.806222 3.80593 3.80622

Lio 4,468752 L, L6824 L,46875

Lyq 34,60000 34,5947 35
North Zone

Lg 3.805012 3.80472 3.80501

Lio 4,684299 4,68376 4,68430

Lq4q 35.85450 35.8490 36

COMPUTATION OF SCALE FACTOR FROM STATE PLANE COORDINATES

An engineering approach to computing scale factors was pre-
sented by Professor Ralph M. Berry in 1972 [h]. His for-
mulas are tailor made for computer processing and the re-
sults are generally reliable to seven or eight significant
figures. The equation given by Berry for the scale factor
is;

k = ko * (1 + K * g2) with q = /106  where, (39)

ko = the scale factor of the central parallel of a
Lambert zone, generally Claire's value of Ls.

K = an empirical constant for a given zone. These
constants are tabulated for all zones in the ap-
pendix of L[4],

q = a function of the distance from the central
parallel,

s = the distance from the central parallel,

The correct value of the scale factor of the central par-
allel as listed in Table 3 must be used to compute a cor-
rect scale factor in Michigan. If Claire's value of Ly for
Michigan Lambert zones is used, the resulting scale factor
is too large by a factor of 1.00003820. From equation (7)
one can see that the erroneous scale factor is really a
"sea level" scale factor. Although the correct grid factor
could still be obtained using equation (15), use of the
correct scale factor is recommended., If the ground elevat-
ion is far enough from 800 feet MSL to make the sea level
reduction significant, the elevated sea level factor should
be used with the correct scale factor to compute the cor-
rect grid factor.
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CONCLUSION

Although inferences could be made as to the merits of the

use of project datums, zone datums, and sea level reduct-

ions (especially when incorporating the 1983 NAD), that is
sufficient for another paper and beyond the scope of this

paper on the Michigan scale factor.

The Michigan scale factor is applicable to a reference sur-
face 800 feet above sea level and should be used for dist-

ances which are near(or have been reduced to) that reference
surface., The Michigan scale factor can be determined cor-

rectly by;

1. Scaling the latitude of a point from an appropri-
ate topographic map and using the latitude as an
argument to select the corresponding scale factor
from the projection tables.

2, Using the formula listed in Publication 62-4, mod-
ified to use the Michigan Spheroid value of "a"
rather than the value of "a" for the Clarke Spher-
oid of 1866.

3. Computing the scale factor from state plane coord-
inates according to the procedure given by Profes-
sor Ralph M. Berry [&]. However, the correct
value of the scale factor for the central parallel
of the zone must be used for k, (see Table 3).

The author has encountered several cases where the wrong
scale factor has been used due to confusion caused by the
discrepancies discussed in this paper. It is also discon-
certing to discover that commercial computer programs are
available which give a sea level scale factor in Michigan,
However, the point is made that it is our responsibility as
professionals to understand and to verify the answers ob-
tained from a "black box". It is hoped that this paper
will increase our understanding of the Michigan scale fact-
or and give it a better chance of being used correctly.
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