LDP Example - Las Cruces, New Mexico

Earl F. Burkholder, PS, PE, F.ASCE - Global COGO, Inc. Las Cruces, NM 88003 - April 16, 2015

Two points from NGS Data Base are about 16 km apart and have elevation difference of 160 m:
A. CrucesAir NAD 83(2011)
B. Reilly NAD 83(2011)
$\phi=32^{\circ} 16^{\prime} 54 .{ }^{\prime \prime} 63269 \mathrm{~N}$
$\lambda=106^{\circ} 55^{\prime} 22 . " 24763 \mathrm{~W}$
Ellipsoid Height $=1,326.205 \mathrm{~m}$
Geoid Height $=-24.08 \mathrm{~m}$
Ortho Height $=1,350.3 \mathrm{~m}$
$X=-1,571,430.649 \mathrm{~m}$
$Y=-5,164,782.254 m$
Z $=3,387,603.202 \mathrm{~m}$
$\phi=32^{\circ} 16^{\prime} 55.93001 \mathrm{~N}$
$\lambda=106^{\circ} 45^{\prime} 15.16035 \mathrm{~W}$
Ellipsoid Height $=1,166.543 \mathrm{~m}$
Geoid Height $=-23.94 \mathrm{~m}$
Ortho Height $=1,190.5 \mathrm{~m}$
$X=-1,556,177.595 \mathrm{~m}$
$Y=-5,169,235.284 \mathrm{~m}$
$Z=3,387,551.720 \mathrm{~m}$
State Plane, North Zone - meters
Northing $=142,315.959 \mathrm{~m}$
Easting $=436,621.577 \mathrm{~m}$
Grid scale factor $=0.99994952$
Combined factor $=0.99974134$
Northing $=142,268.771 \mathrm{~m}$
Easting = 452,506.490 m
Grid scale factor $=0.99992781$
Combined factor $=0.99974469$

Same two points computed on LDP:
B. CrucesAir (LDP)
$\phi=32^{\circ} 16^{\prime} 54 . " 63269 \mathrm{~N}$
$\lambda=106^{\circ} 55^{\prime} 22 .{ }^{\prime 2} 24763 \mathrm{~W}$
Northing $=3,544.8009 \mathrm{~m}$
Easting = 33,714.4327 m
Modified GSF $=0.99999327$

B. Reilly (LDP)

$$
\begin{aligned}
& \phi=32^{\circ} 16^{\prime} 55.93001 \mathrm{~N} \\
& \lambda=106^{\circ} 45^{\prime} 15.16035 \mathrm{~W} \\
& \text { Northing }=\quad 3,571.6578 \mathrm{~m} \\
& \text { Easting = } \quad 49,603.2227 \mathrm{~m} \\
& \text { Modified GSF }=0.99999000
\end{aligned}
$$

From Reilly to CrucesAir (average elevation)
State plane grid distance $D_{S P C}=\sqrt{\Delta e^{2}+\Delta n^{2}}=\quad 15,884.983 \mathrm{~m}$
Average combined factor $=(0.99974134+0.99974469) / 2=0.99974302$
Average ground distance, $D_{H D}=D_{S P C} /$ ave. CF $\quad 15,889.066 \mathrm{~m}$

LDP grid distance $D_{L D P}=\sqrt{\Delta e^{2}+\Delta n^{2}}=\quad 15,888.813 \mathrm{~m}$
Average modified grid scale factor (ave. MGSF) = 0.99999164
Average line height from 1,200 m: $h=1,246.37-1,200.0=46.37 \mathrm{~m}$
(Use average earth radius $=6,372,200 \mathrm{~m}) ; \quad R /(R+h)=0.99999272$
Average modified combined factor = ave. MGSF*R/(R+h)= 0.99998436
Average height ground distance, $D_{H D}=$ LDP grid dist $/$ ave. CF $=15,889.061 \mathrm{~m}$

Note - with proper corrections applied, ground distances agree within 0.005 m or 1:3,000,000. If in this case, the elevation factor is ignored for the LDP values, then the ground distance agrees within 0.253 m over a distance of 15,889 meters or $1: 62,800$. The question is, "how precise must the computations be performed or how good is good enough?" That depends upon user/application.

A formal reference for accuracy of elevation factor is http://www.globalcogo.com/ElevFact.pdf

