Spatial Data Accuracy As Defined by the GSDM
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ABSTRACT: The concept of a global spatial data model (GSDM) which combines horizontal and
vertical spatial data into a single three-dimensional database is defined and described in Burk-
holder (1997a). This paper describes how the GSDM accommodates spatial data accuracy, provid-
ing specific equations for computing various accuracies. A careful distinction is made between
describing GSDM features and issues of implementation. As a consistent set of equations and rela-
tionships, the GSDM can be used immediately by anyone. Greater benefits will, however, accrue as
the concepts gain acceptance and the GSDM procedures are standardized and adopted by the
spatial data user community at large (implementation).

Introduction'

he topic of accuracy is central to efficient use
of spatial data. Previously, an answer to the

question “Accuracy with respect to what?”
was largely implied by the context in which the ques-
tion was asked. However, with the evolution of mod-
ern measurement technologies, the use of spatial
data in geographic information systems, and wide-
spread use of sophisticated data processing capabil-
ity, the issue of spatial data accuracy is increasingly
relevant and the question begs an answer. Tradition-
ally, spatial data accuracy has been considered in
terms of  2-dimensional  horizontal  data
(latitude/longitude) and separately in terms of
1-dimensional vertical data (elevations). But, spatial
measurements are made in a 3-dimensional environ-
ment and, except for human perception and use,
such separation of horizontal and vertical concepts is
largely unwarranted. Recently, the concept of a
global spatial data model (GSDM) which combines
horizontal and vertical spatial data into a single
three-dimensional (3-D) database has been defined
(Burkholder 1997a). When considered within the
framework of the GSDM, concepts of spatial data
accuracy can be viewed with greater clarity.

The global spatial data model (GSDM) is de-
fined in a report, “Definiion of a Three-
Dimensional Spatial Data Model for Southeastern
Wisconsin” (Burkholder 1997a) and described in
more detail in Burkholder (1997b, 1997c, 1998a,
and 1998b). The GSDM consists of a functional
model of geometrical equations and a stochastic
model which defines error propagation procedures.
The functional model equations are based on the
Earth-centered, Earth-fixed (ECEF) rectangular
geocentric coordinate system defined by the Defense
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Mapping Agency (DMA 1991), and the stochastic
model utilizes formal error propagation techniques
as described in Chapter 4 of Mikhail (1976) and
Chapter 5 of Wolf and Ghilani (1997).

Used with a BURKORD™ 3-D database which
stores the geocentric coordinates of each point, the
covariance matrix for each point, and correlations
between points, the GSDM defines simple, rigorous,
efficient procedures for storing, manipulating, and
using geospatial data. Among others, an important
feature of the GSDM is that it accommodates any
level of accuracy and provides proven statistical tools
which can be used to answer the question, “Accuracy
with respect to what?” That means a user is able to
make better decisions by knowing what assumptions
(mathematical conditions) are associated with the use
of such terms as “network” accuracy and “local”
accuracy.

The GSDM Covariance Matrices

The functional component of the GSDM consists
of geometrical equations which are used to ma-
nipulate X/Y/Z geocentric coordinates defining
the spatial position of each point. The stochastic
component of the GSDM is an application of the
laws of variance/covariance error propagation and
utilizes the following matrix formulation:

Zyy=]mZxx]yx (1)
where:

2,y = covariance matrix of computed result

1 Editors Note: The use of trademarked terms in this paper does not constitute an endorsement of the product or trademark.
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2xx = covariance matrix of variables used in
computation; and
Jvx = Jacobian matrix of partial derivatives of
the result with respect to the variables.
The GSDM uses two covariance matrices for
each point; the geocentric covariance matrix and the
local covariance matrix. The following symbols and
matrices are used in the stochastic model:
o’ o' 0,' = variances of geocentric coordi-
nates for a point;
Oyy Oy Oy, =covariances of geocentric coordi-
nates for a point;
variances of a point in the local
reference frame;
covariances of a point in the lo-
cal reference frame;
O’ Oay” G4, = variances of geocentric coordi
nate differences;
Oaxay Oaxaz Cayaz = Covariances of geocentric
coordinate differences;
a,’ 04, 0,,° = variances of coordinate differ-
ences in local frame;
Osetn Cacay Cana, = Covariances of coordinate
differences in local frame;
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o o,l = variances of local horizontal dis-
tance and azimuth;
Oy = covariance of local horizontal

distance with azimuth;
Oxixe Oyivs = elemt?nts of Pgmt 1 - Point 2 cor-
relation matrix.

Geocentric Covariance Matrix
(2)
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Local Covariance Matrix

(3)

Notes about the geocentric and local covariance

matrices:

¢ Fach covariance matrix is symmetric 3 x 3. Six numbers
are required to store upper (or lower) triangular values.

Units in each covariance matrix are length squared.
The off-diagonal elements represent correlations, di-
agonal elements are called variances, and standard
deviations are computed as the square root of the
variances.

Each covariance matrix (with its unique orientation)
represents the accuracy of a point with respect to a
defined reference frame (or to whatever control is held
fixed by the user) and is designated datum accuracy.
The local covariance matrix and the geocentric
covariance matrix are related to each other mathe-
matically by a rotation matrix for the latitude/ longi-
tude position of a point computed from its X/Y/Z
coordinates (Burkholder 1993). The rotation matrix
is:

—-sinkA cos A 0
R=| -sin$cosh -sindsind cosé 4)
cospcosh cosdsind sin¢

and the relationship between the covariance ma-
trices is:

Zemw =RZxwz R (5)
Zxwz =R'Zywu R (6)

With regard to the rotation matrix in equa-
tion (4), longitude is counted 0° to 360° east from
the Greenwich Meridian, west longitude is a nega-
tive value, and latitude is counted positive north
of the equator, negative south of the equator.

The GSDM 3-D Inverse

Given that point 1 is defined by X/Y/Z, and
point 2 by X/Y,/Z,, the matrix formulations of the
3-D geocentric coordinate inverse and covariance
error propagation are:

x,) (7)
Yl
Ax] [-1 0 0 100]},
1
AYl=|0 -1 0 010 X
AZ 0 0 -1001]}?
Y2
&)

EA =]lzl-—2 ]'1 (8)

The Jacobian matrix in equation (7) and the
general covariance error propagation procedure
in equation (8) are used to find the overall geo-
centric inverse covariance matrix:
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axl OXIYI oxlzl oXlX, ("X,Y2
2
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- 2
1 0 0100 P G o2 %x, %zy,
X,Z, Yz, 1 ]
Z, =10 -1 0010 s
0 0 -1001]|[|%x %rx, x| [ %% %xy
2
%%y, %ry, Y2y, Orx, 9y,
(¢}
%z %rg Uzlzz_ Szx, %zy,

Equation (9) is used to define various accuracies
based upon user choices. The matrix operation in
equation (9) can be used to compute:
¢ Local accuracy, if the full covariance matrix is

employed;
¢ Network accuracy, if the correladon between

points 1 and 2 is taken to be zero; and
¢ P.O.B. accuracy, if the covariance matrix of point

2 is the only one used.

Implementation issues related to the various
accuracies defined by equation (9) are discussed
later. For the sake of completeness, the remaining
inverse computations for local coordinate differ-
ences, directions, distance, and associated standard
deviations are given below. The matrix formulation
for computing local coordinate differences from
geocentric coordinate differences is (Burkholder
1993):

Ae —sin \ cosh 0 AX

An |=| —sin¢cosA —sindsind cos¢d AY

Au cospsfhl cosdsind sing || AZ
CcosA

(10)

¢= geodetic latitude
A= geodetic longitude (at point 1).

The Jacobian (rotation) matrix in equation
(10) is used with the general error propagation
formulation to compute the covariance matrix of
local coordinate differences as:

2
Cae Opean Orean

2
Oax
Zip-mw = [Oacan

2
OprcAu OanAu Oau

The functional model equations for a 2-D local
tangent plane horizontal distance (Burkholder 1991)
and 3-D azimuth (Burkholder 1997d) are:

oX,Zz

Oaxay
2 =1, %, J; =1 iy © 5
Oan  Opnan| =92 2492 =92 |%axay ©Cay OFavaz|2

Oaxaz Cavaz

Note: Correlation between
points 1 and 2 is described by
Orz -1 0 0 the off-diagonal sub-matrices.

0 -1 0 (9)

0 0 -1

1 0 O
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S=HD(1) = JAe? + An?

o =tan™! (2‘—")

And the Jacobian matrix of those partial deriva-

tives is:

2s &s s A Ao

| cAe cAn  2Au — N § 14

J3=| %a 2a 2o [T fnae g a4
CAe CAn  BAu

Finally, using the covariance propagation
formulation, the 2-D results are:

(12)

(13)

2
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Zop-nv = [ - ] =JsZsp_ v ]3 =
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CH
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(15)

2
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Take square root of diagonal elements to get
standard deviations and convert radians to sec-
onds using 206,264.8062471 seconds per radian.

Comments on Features
of the GSDM

Using the GSDM raises many questions. It is not
possible to anticipate or address them all in one
short article, but comments on several features are:
¢ The GSDM really
includes two covari-
Osyaz ance matrices for
each point. A BURK-
ORD™ data base
stores values of the
geocentric covariance
matrix along with the
geocentric XN/Z
coordinates for each
point. The local co-
variance matrix for each point relates more spe-
afically to human perception of local directions

2 (11)

Oaz
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and is computed on demand. Alternatively, when
defining the positional tolerance of a point, the
local standard deviations (or covariance values)
may be known and input. In that case the geocen-
tric covariance matrix is computed from the local
covariance matrix. The following points focus on
the relationship between the local and geocentric
covariance matrices:

* The geocentric covariance matrix and the
local covariance matrix will both have zero
correlations if and only if the standard
deviations are the same for all components
(spherical uncertainty). Because there is no
requirement that one spatial data compo-
nent must have the same standard devia-
tion as another, one of the two covariance
matrices may have no correlations while
the other one does. Routinely, both covari-
ance matrices will have correlation values.

* Equation (9) computes the geocentric co-
variance matrix of the vector between
points based on the stored geocentric co-
variance matrix of each point and the
stored poirg-pair correlations (if they
exist).

* Equation (11) computes the local covari-
ance matrix of the vector between points.
This is why “horizontal” and “vertical” data
can be simultaneously stored in the same
3-D data base. Correlations in the geocen-
tric covariance matrix preserve the integ-
rity of spatial data in the local component
directions.

* Reliable covariance and point-pair correlation
data are required. Where do they come from?
An over-simplified answer is that a user can
assign standard deviations (reasonable or
otherwise) to the east/north/up components of
any point when defining or storing the 3-D
position of the point. A better answer is that
variances (and covariances) for each point and
correlations between points are obtained
through error propagation computations of
each spatial data measurement contributing
to the network. A least squares adjustment of
a GPS network is one example. Options are:
¢+ No covariance (or correlation) data are

available in which case the default values
for standard deviations are all zero and the
positional data (X/Y/Z coordinates) are
used as being exact.

¢ Covariance data are stored, but point-pair correla-
uons are not available because (1) they were com-
puted and not stored or (2) they were not
computed. Regardless of the reason, local accu-
racy computes to be the same as network accuracy

if point-pair cotrelation values are zero or if

point-pair correlations are not used.

* Covariance matrix values for each point
and point-pair correlation data are both
available. In this case datum accuracy is as
defined by the user and the GSDM pro-
vides a choice of computing (or using) local
accuracy, network accuracy, or P.O.B.
accuracy.

Implementation Issues

The mathematical procedures for manipulating
spatial data are unambiguous, but the manner in
which equation (9) is used and the reference frame to
which the GSDM is attached both make a difference
when answering the question, “Accuracy with respect
to what?”

Given that it is each user’s responsibility to verify
that legitimate spatial data are being used, and given
that stored information depends on quality control
measures imposed during the data collection, reduc-
tion, adjustment, and verification, the GSDM specifi-
cally relies upon, defines, supports, and provides
four different kinds of accuracy. They are, in
summary:
¢ Datum accuracy of a single point is with

respect to a defined reference frame or to

whatever control the user decides to hold
fixed. Although datum accuracy can be ex-
pressed in either the geocentric or a local
system, a BURKORD™ data base stores da-
tum accuracy in the geocentric reference
frame covariance matrix. Datum accuracy in
the local reference frame is computed upon

demand using equation (5).
¢ Local accuracy of one point with respect to

another is based upon a full covariance matrix
in equation (9) which accommodates statistical
correlation between endpoints. This option
provides answers, the quality of which is de-
termined primarily by the quality of the “con-
necting measurement” and is largely
unaffected by the datum accuracy of the end-
points. While mathematical procedures for
storing, tracking, and using the correlations
necessary to realize local accuracy answers are
well defined, computational procedures for
doing so need to be documented better.

* Network accuracy of one point with respect to
another is based upon the collective datum accu-
racy of both endpoints and assumes the two point
positions are statistically independent. That
means the correlation sub-matrices in equation (9)
are either zero or assumed to be zero—even if
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they are not. Network accuracy is probably the
most useful of the various described accuracies
because point-pair correlations needed for local
accuracy computations are not routinely stored in
most spatial data bases. A BURKORD™ data base
accommodates storage of point-pair correlations.
* P.O.B. accuracy of any forepoint with respect

to any user-selected standpoint assumes the
two points are statistically independent and
that the standpoint position is errorless. In
terms of equation (9), the datum accuracies of
point 2 are the only covariance values used,;
all other equation (9) covariance values are
taken to be zero. The P.O.B. datum concept is
defined as part of the GSDM in which the
relative positions of a collection of points are
defined with respect to an origin (P.O.B.)
selected by the user. Admittedly, P.O.B. accu-
racy is not appropriate for sophisticated ap-
plications, but it is easy to use and may, in
fact, be very appropriate for many routine
local uses such as cadastral surveys, site devel-
opment, or other construction surveys.

Another implementation issue is the underlying
datum with which the GSDM is used. Although other
user-defined environments could also be considered,
the three following environments (initial datums)
could be judged appropriate for using the GSDM in
the United States:
¢ X/Y/Z values based upon existing published High

Accuracy Reference Network (HARN) points;
¢ X//Z values based upon a global polyhedron

network such as the Continuously Operating

Reference Stations (CORS); and
¢ The best possible (current epoch) International

Terrestrial Reference Frame (ITRF) values refer-

enced to the earth’s center of mass.

Is it necessary or desirable for each of those
datums to have a unique name associated with each
of the possible accuracies? The answer might be
“yes” if that is required to avoid a problem similar to
the computer industry problem with the January 1,
2000, date. However, Malys et al. (1997) show that
there is little statistical difference between WGS84
and the ITRF94 and conclude transformation be-
tween them is not warranted. That being the case,
maybe the proposed accuracy names are sufficient in
and of themselves. Otherwise, simple modifiers such
as HARN, CORS, or ITRF could be used as
appropriate.

Conclusion

The GSDM has been defined and proven but has not
yet been widely adopted. Given its rigor, simplicity,
and universality, the adoption of the GSDM as a
standard for storing, manipulating, and exchanging
geospatial data is viewed as a matter of time. Al-
though the functional model equations and stochas-
tic model procedures both enjoy mathematical
specificity, it is conceded the proposed accuracy
names are not consistent with the use of “network
accuracy” and “local accuracy” as contained in the
FGDC draft accuracy standards (FGDC 1997) pub-
lished in 1997. Acknowledging other accuracy names
might be more appropriate, it is hoped the GSDM
and proposed accuracy names will be considered and
discussed carefully before final geospatial accuracy
standards are promulgated.
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