Corrections in published materials

Surveying and Land Information Systems, Vol. 59 No 1, March 1999, article entitled, "Spatial Data Accuracy as Defined by the Global Spatial Data Model (GSDM)."

1. The matrix formulation in equation 10 should read:

$$\begin{bmatrix} \Delta e \\ \Delta n \\ \Delta u \end{bmatrix} = \begin{bmatrix} -\sin \lambda & \cos \lambda & 0 \\ -\sin \phi \cos \lambda & -\sin \phi \sin \lambda & \cos \phi \\ \cos \phi \cos \lambda & \cos \phi \sin \lambda & \sin \phi \end{bmatrix} \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix}$$
(10)

2. Element 2,2 in equation 14 is shown as postive. It should be negative. The correct formulation is:

$$= \begin{bmatrix} \frac{\Delta e}{S} & \frac{\Delta n}{S} & 0\\ \frac{\Delta n}{S^2} & -\frac{\Delta e}{S^2} & 0 \end{bmatrix}$$
 (14)

Surveying and Land Information Systems, Vol. 53 No. 1, March 1993, article entitled, "Design of a Local Coordinate System for Surveying, Engineering, and LIS/GIS."

A. Page 36, just below middle of page: The last operator in the equation for ϕ should be "times" not "plus." The equation should read:

$$\varphi = \chi + \sin \chi \cos \chi (F_0 + \cos^2 \chi (F_2 + \cos^2 \chi (F_4 + \cos^2 \chi (F_6 + F_8 \cos^2 \chi))))$$

B. Page 37 just below middle of the page: The last operator in the equation for ω_0 should be "times" and not "plus." The equation should read:

$$\omega_0 = \phi_0 + \sin \phi_0 \cos \phi_0 (U_0 + \cos^2 \phi_0 (U_2 + \cos^2 \phi_0 (U_4 + U_6 \cos^2 \phi_0)))$$