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Three-dimensional (3-D) spatial data accuracy is described by the standard deviation of each
component in the context of a global spatial data model (GSDM) that simultaneously
accommodates both local and global perspectives, both high-level scientific and local “flat-earth”
applications, and both activities that generate spatial data and activities that use spatial data.

Abstract:

The goal in this paper is to identify and build on fundamental concepts of spatial data and error
propagation to promote a better understanding of spatial data accuracy.  Starting with a definition
of the spatial data primitive and associated conventions, spatial data of various types are added to
beginning control point values to build a 3-D database.  Using the global spatial data model
(GSDM), the unique location of each point is stored as geocentric X/Y/Z coordinates and the
stochastic information for each point is stored in a covariance matrix.  Conventional latitude/
longitude, UTM, and map projection coordinates (plus other geometrical elements such as
heights, areas, and volumes) are derived from the stored values.  The standard deviation of each
derived quantity is readily available from the stored stochastic information using conventional
error propagation techniques. Regardless of discipline, spatial data users worldwide can enjoy the
benefits of computing and comparing spatial uncertainties within a common standard system.

Introduction:

Spatial data accuracy is an umbrella term that encompasses concepts such as uncertainty, standard
deviation, positional tolerance, confidence intervals, error ellipses, and others.  When discussing
spatial data accuracy, a question often overlooked is, “Accuracy with respect to what?”  In some
cases, the answer may be irrelevant but, in all cases, the answer should be unambiguous, correct,
and readily available. The process of establishing spatial data accuracy relies upon the accuracy
of the beginning control point values, the quality of the observations, the adequacy of the
model(s) used for spatial data manipulations, and correctly identifying and tracking the
accumulation of random error, component by component.  This paper describes that process in
the context of the global spatial data model (GSDM) that includes both a functional model of
geometrical relationships and a stochastic model for tracking the uncertainty of any/all elements
(Burkholder 1997).  Not restricted to any one discipline, the GSDM facilitates collection, storage,
manipulation, exchange, and use of spatial data worldwide because the same simple 3-D model
accommodates both those activities that generate spatial data and those activities that use spatial
data, whether in high-level scientific research or in local “flat earth” applications.  And,
regardless of application, questions regarding spatial data accuracy can be handled with a
common set of stochastic model equations.  The spatial data accuracy discriminator is the
magnitude of the standard deviation, component by component, and each user’s (or
organization’s) choice as to what is “good enough” and what isn’t.
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Definitions and conventions:

For purposes of this paper, the following definitions and conventions are used.
1. Spatial data uncertainty is given by its standard deviation in each of three

dimensions.  One standard deviation (1 sigma) provides a 68% confidence level.
Many spatial data users routinely use a 95% (2 sigma) confidence level as the basis
for making comparisons and/or inferences.

2. Euclid (Appendix 3, Pedoe 1970) used the following definitions: “A point is that
which has no part.” and “A line is breadthless length.”  In an attempt to be more
practical, the spatial data primitive is taken to be the distance between endpoints of
a line in Euclidean space.  Even though a line is the path of a moving point, a
distance (not a point) is viewed as the spatial data primitive because the location of a
point is meaningless unless/until described with coordinates (distances).  The
endpoints of the line may be abstract entities (such as the origin or axes of a
coordinate system) or physical objects (such as survey monuments, building corners,
or the location of a GPS antenna – whether stationary or moving).  Such a distance
between endpoints may be curved (geodetic coordinates) or straight (rectangular
coordinates) without violating the definition (Burkholder 2001).

3. Physical geodesists use a definition which also includes the gravity field (NIMA
1997) but, for purposes of describing location and spatial data accuracy, a 3-D
geodetic datum is defined as an earth-centered earth-fixed (ECEF) right-handed
rectangular X/Y/Z coordinate system whose:

a. origin is at the earth’s center of mass.
b. Z axis coincides with the earth’s mean spin axis.  That means X/Y

coordinates are in the plane of the equator.
c. X axis is coincident with zero degrees longitude (the Greenwich Meridian).

That means the Y axis lies at 90° east longitude.
d. distance unit is meters.
e. ellipsoid is defined by two parameters that permit computation of equivalent

latitude/longitude/height coordinates from geocentric X/Y/Z coordinates.

The GSDM and error propagation concepts described herein work equally well
with any well-defined 3-D datum.  Three commonly used reference frames
(datums) described by Snay and Soler (1999 – Part 1) are the North American
Datum of 1983 (NAD83), the World Geodetic System of 1984 (WGS84), and the
International Terrestrial Reference Frame (ITRF).  Understandably, values in one
system are best compared with other values in the same system.

4. Recognizing that the origin of any system is relative to some “larger” system (the
center of mass of the earth is relative to the center of mass of our solar system etc),
absolute quantities are expressed by a numerical value in a defined system.  Units,
such as meters, degrees, etc, must be associated with each numerical value.  An
exception is radian measure and other ratios in which the units cancel.

a. Coordinates are often used as absolute values.
b. An azimuth is an absolute quantity whose reference is either implied or

defined explicitly.
c. The numbers or values assigned to the origin of a well-defined system (zero

or otherwise) may be viewed as absolute quantities.



Page 3

d. The accuracy of an absolute quantity is called datum accuracy and is often
implied by the units and/or the context in which the number is used.  Explicit
accuracy statements are used to eliminate possible confusion.

5. A relative value is the difference between two absolute quantities expressed in the
same system.

a. Coordinate differences are relative.
b. An angle, being the difference between two directions, is relative.
c. It is possible for an absolute quantity to be treated as a relative quantity.  This

could happen if the origin has units of zero.  If zero is subtracted from an
absolute quantity, the result can be considered a relative value because it
represents the difference of two absolute quantities.

d. The accuracy of relative spatial data can be expressed in either of two ways.
One expression, network accuracy, represents the uncertainty (standard
deviation) of the difference between two values in the same system.  Another
expression, local accuracy, represents the uncertainty of one point with
respect to another.

6. Elevations and time are similar in that each may look like an absolute value.  But, in
reality, both are used as relative values due to the ambiguity of their physical origins.

a.  Mean sea level, the geoid, enjoys a simple physical definition as the “zero”
equipotential surface.  But, as yet, that origin has not been precisely located
worldwide.  Therefore it can be said, precise absolute elevations do not exist.

b. Other vertical datums are referenced to some arbitrary surface which implies
those elevations are relative.

c. Time is counted from the “big bang” (Hawking 1988), from the birth of
Christ (B.C. and A.D.), from the vernal equinox (the instant of the sun’s zero
declination), from the daily transit of the sun over a stated meridian (A.M. or
P.M.) or from some arbitrary zero computed from the readings of a group of
atomic clocks.  Whether in years, months, days, hours, or seconds, time is an
interval between two specified events – a relative quantity.

d. Time differences and elevation differences can each be measured quite
precisely and that information can be quite useful.  But, the accuracy of each
is limited to relative accuracy statements.  In terms of absolute accuracy,
there is nothing to be gained from adding a precise interval to an absolute
quantity of dubious value.

e. Ellipsoid height is a derived quantity with respect to the ellipsoid (ultimately
with respect to the earth’s center of mass).  Because the origin is well defined
and measurable, ellipsoid height can be considered an absolute quantity.
Ellipsoid height differences are relative quantities.   This point can be added
to the arguments in favor of redefining elevation to be ellipsoid height, see
(Burkholder 2002).

Spatial Data Components and Their Accuracy:

As listed in Burkholder (2001), the following spatial data types are based upon the spatial data
primitive in terms of the GSDM:

1. Absolute X/Y/Z geocentric coordinates (Figure 1, Box 1) are perpendicular distances in
meter units from the respective axes of the ECEF coordinate system.
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2. Absolute geodetic coordinates (Figure 1, Box 2) of latitude/longitude/height are computed
from ECEF coordinates with respect to some named datum/ellipsoid.

3. Relative geocentric coordinate differences (Figure 1, Box 7) are obtained by differencing
compatible geocentric X/Y/Z coordinate values or they can be obtained by rotating relative
local coordinate differences into the X/Y/Z reference frame.  Relative geocentric coordinate
differences are also obtained directly as the ∆X/∆Y/∆Z components of a GPS vector.

4. Relative geodetic coordinate differences, ∆φ/∆λ/∆h, (not shown in Figure 1) are obtained
as the difference of compatible (common datum) geodetic coordinates.

5. Relative local coordinate differences, (Figure 1, Box 8) are the local tangent plane
components of conventional total station surveying measurements.  If deflection-of-the-
vertical is severe and if project requirements warrant same, the vertical based measurements
of a total station instrument should be converted to normal based measurements before
calling them local geodetic horizon components.  Relative local coordinate differences are
also components of a geocentric ∆X/∆Y/∆Z vector rotated into the local geodetic horizon.

6. Local coordinates, e/n/u, are distances from some origin whose local definition may be
sufficient in three dimensions, two dimensions, or one dimension.  Burkholder (2001) calls
these absolute coordinates but, depending upon how they are viewed, they could also be
considered relative values.  Elevations are particularly difficult to categorize.  The real
underlying issue is how the local system is defined.  Examples include:

a. Point-of-Beginning (P.O.B.) datum coordinates (Figure 1, Box 9) are defined by
Burkholder (1997) as the local tangent plane components from any point (origin)
selected by the user to any other point.  These derived coordinates enjoy full
mathematical definition in three dimensions and suffer no loss of geometrical
integrity in the GSDM.

b. Map projection (or state plane) coordinates (Figure 1, Box 5) are well defined in
two dimensions with respect to some named origin and geodetic datum.

c. Ellipsoid heights (Figure 1, Box 2) and orthometric heights (Figure 1, Boxes 3
and 5) are one-dimensional distances above or below some named surface.
Ellipsoid heights can be considered absolute but other elevations are considered
relative.

7. Arbitrary local coordinates (not shown in Figure 1) may be 1D, 2D, or 3D based upon
some assumed origin.  Although useful in some applications, arbitrary local coordinates are
generally not compatible with other local coordinate systems and have limited value in the
broader context of geo-referencing.  Many computer graphics and data visualization
programs use arbitrary local coordinates.

With regard to all spatial data components, both absolute and relative, each one can have a
standard deviation associated with it.  If the standard deviation of any component is zero, the
quantity is either known very precisely and/or the value (e.g. a control point) is being used as a
“fixed” quantity.  Standard deviations of subsequently computed spatial data components are
based upon propagation of the measurement error and standard deviations of the computed points
are determined through the network adjustment process. Given a successful network adjustment
and computation of coordinates, the implied accuracy statement is “with respect to the points held
fixed by the user.”  Maybe the beginning point was a hub pounded in the ground.  Maybe it was a
section corner of the U.S. Public Land Survey System.  Maybe it was a high-accuracy-reference-
network (HARN) point.  Or maybe it was the orbit parameters of the GPS satellites.
Understandably, the value of a completed project is greatly enhanced if explicit accuracy
statements are made.  But, making or not making an explicit statement is not the real issue.  The
real issue is being able to make one of the following statements supported by appropriate
statistics.
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1. “The absolute datum (identified by user) accuracy of Point X in 3 dimensions is σX =
________, σY  = ________, and σZ  = ________.”  An equivalent statement, derived
from the first, gives the standard deviations in the local reference frame as σe =
________, σn = ________, and σu = ________.  The absolute accuracy statement
involves only one point and is with respect to the datum selected/named by the user.
If the project were a 2 dimensional survey (i.e. state plane coordinates), only two
components would be named.

2. “The relative network accuracy of the direction and distance from Point 1 to Point 2
is σAZ = ________ and σDIST = ________.”  Relative accuracy applies to the
difference between two independent points having absolute accuracy values in the
same datum.

3. From Point 1 to Point 2, the relative network accuracy of the height difference (∆h)
or perpendicular distance from the local tangent plane (∆u) is σ∆h = ________ or σ∆u
= ________.

4. “The relative local accuracy of Point 2 with respect to Point 1 is σAZ  = ________,
σDIST = ________,  σ∆h = ________ or σ∆u = ________.”  Relative local accuracy
exploits and is largely governed by the statistical correlation which exists between
two directly connected points in the same datum.

A procedure for computing each of the listed accuracies is given in equation (9).

But Everything Moves:

Most spatial data activities involve using a database such as a geographic information system
(GIS).  The importance of the basic geodetic control in a GIS is well documented by the National
Research Council (NRC 1983) and others.  Ideally, the geodetic control information upon which
the database is built should be of such quality that it could be held “fixed”, i.e. having a zero
standard deviation.  Here again the question “With respect to what?” becomes relevant.  A
monumented point that is stable in one system (e.g. NAD83) may, in fact, be moving in another
(WGS84 or ITRF).  With the advent of GPS positioning, it is now possible to determine the
location of control points much more accurately than before and the scientific community now
has conclusive evidence that points once thought to be permanent are, in fact, moving – with
respect to what?   An over-simplified answer is that “everything moves.”  A better answer is
required.  More specifically, the administrators and users of a database (whether local, regional,
national or global) deserve explicit information as to the stability and accuracy for the various
categories of points in the database.  And, if they are moving, what is the velocity vector of the
point?  This paper is primarily about 3-dimensional uncertainties but, given that points move,
time must be added as the fourth dimension and the epoch must enjoy equal standing with the
coordinates.  Software for converting X/Y/Z coordinates from one epoch to another is called
HTDP and is available gratis from the U.S. National Geodetic Survey (NGS) at
www.ngs.noaa.gov.  HTDP can also be used to convert X/Y/Z coordinates from one 3-D datum
to another (Snay 1999).

With respect to movement, a simple question must be asked – perhaps as a side bar issue.  “Are
we standing on the train watching the station go by or are we standing at the station watching the
train go by?”  The earth’s center of mass is the location reference for the entire globe.  Points on
the earth’s surface, or anywhere within the earth may move with respect to the earth’s center of
mass but the reference is fixed by definition – it does not move.  Admittedly, with respect to
where we stand or with respect to monumented points, statements are made that the center of

http://www.ngs.noaa.gov/
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mass of the earth moves.  The implied perspective is considered subordinate to the explicit
statement, “the earth’s center of mass does not move.”

The ITRF is defined such that the net tectonic movement of all the earth’s continental plates is
zero (Snay and Soler, 1999, Part 3).  But, points on the earth’s surface still move with respect to
the earth’s center of mass and with respect to each other.  Therefore the locations of the ITRF
monuments are defined with both coordinates and velocities.  Spatial data users in North America
will be reassured to know that the NAD83 datum is the one to use because, except for areas of
tectonic activity, points on the NAD83 remain “fixed” to the North American plate and move
together.  Such oversimplification is dangerous.  The NAD83 monumented control points on the
ground may be stable, but the GPS satellite orbits are defined in and the continuously operating
reference stations (CORS) coordinates are published in the ITRF reference frame.  (NGS also
publishes NAD83 coordinates for the CORS stations).  The issue of which to be aware is that the
absolute coordinates (for points on the ground) may be in one reference frame and the relative
coordinate differences (obtained from GPS) may be in a different reference frame.  Since the
NAD83 and ITRF relative coordinate differences are nearly identical, it generally permissible to
attach ITRF relative coordinate differences to absolute NAD83 datum coordinates but mixing
absolute datum coordinates in the same solution should be avoided.  And, as noted by Strange
(2000), the difference in datums is even more important since the removal of selectivity
availability, especially when using GPS code observations.

The point here is that most spatial data users should be aware of three competing 3-D geodetic
datums – NAD83, WGS84 and ITRF.  Each has a reason for existing and each has a role to fill.
At a gross level of accuracy, it does not matter which of the three datums is used.  But, as the
tolerance for uncertainty gets smaller and smaller, it does matter which datum is used. The
GSDM can be used with each datum individually and provides a systematic method for
identifying and tracking the uncertainties in a given datum – whatever they are.  Comparing
uncertainties (standard deviations) between datums is beyond the scope of this paper.

Observations, Measurements and Error Propagation:

This entire paper could be devoted to measurement issues, but only a summary is included here.
In many ways, observations and measurements are very similar and the terms are used
interchangeably.  But, a mathematical distinction is that observations are always independent
quantities and measurements may be either independent or correlated.  Stated differently, any
observation may be called a measurement but a measurement can be called an observation if and
only if it is an independent quantity.  As listed in Burkholder (2001) there are only a limited
number of quantities that can be directly measured.  But, whether the measurement is a length,
time, voltage, temperature, etc, spatial data components are determined indirectly from those
measurements using appropriate models and computations.  The standard deviation of each
component is determined by propagating the measurement uncertainty through the
variance/covariance equation given by the following matrix formulation:

t
XYXXYXYY JJ ∑=∑ ; (1)

where:
ΣΣΣΣYY =  Covariance matrix of computed result.
JYX =  Jacobean matrix of partial derivatives of the result with respect to the

    variables (measurements).
ΣΣΣΣXX =  Covariance matrix of variables (measurements) used in the computations.
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To reiterate, the variables in the measurement covariance matrix are independent and considered
to be observations if and only if there is no correlation in the measurement covariance matrix.

Finding the Uncertainty of Spatial Data Elements:

In the process of establishing the spatial data uncertainty of each point, the user must first decide
which datum will be used.  Mixing datum values is permissible only if the datum differences are
smaller than the resolution of data added to the database.  For example, if 10-meter data are being
used and if the datum differences are at the 1-meter level, it makes no difference which datum is
used.  On the other hand, if 10-millimeter data are being used and datum differences are at the 1-
meter level, the choice of datum does matter.

Second, each project should be based upon reliable control points having X/Y/Z geocentric
coordinates in the appropriate datum.  One control point may be sufficient to put a new project on
the chosen datum, but making a connection to two or more points is standard practice.  If the
basic control points are assigned a zero standard deviation, that means subsequent accuracy
statements should be made “with respect to the control points selected and held fixed by the
user.”  Better statements regarding datum accuracy statement can be made if realistic standard
deviations are assigned to the points used to control the project.  The covariance matrix for each
new point and the correlation between points in the network are a standard by-product of a least
squares adjustment.  When the network adjustment is done in terms of geocentric coordinates and
coordinate differences, the resulting covariance matrix is in terms of the geocentric reference
frame.  The geocentric environment is more efficient for storage and computer operations but,
because of the human perspective, the local covariance matrix is preferred as being more intuitive
– giving sigma east, sigma north, and sigma up as the square root of the diagonal elements.

The GSDM includes both the geocentric and local covariance matrices for each point but, since
one can be derived from the other, a BURKORDTM database (Burkholder 1997) stores only the
geocentric covariance matrix.  The local covariance matrix is computed upon demand.  Both
covariance matrices contain the same datum accuracy of each point component by component
but, because of perspective, the numbers are different.  Each of the two covariance matrices is a
3x3 symmetrical matrix containing the following elements:

Geocentric Covariance Matrix Local Covariance Matrix

              ΣX/Y/Z   =  
















2

2

2

          

           
           

ZYZXZ

YZYXY

XZXYX

σσσ
σσσ
σσσ

   and   Σe/n/u  =   
















2

2

2

          

           

           

unueu

nunen

euene

σσσ
σσσ
σσσ

      (2) & (3)

where:
σX

2, σY
2, σZ

2 = variances for geocentric coordinates for the point.
σXY, σXZ, σYZ = covariance elements for geocentric coordinates.
σe

2, σn
2, σu

2 = local perspective variances for the point.
σen, σeu, σnu = local perspective covariance elements for the point.

And, as shown in Burkholder (1999), the two covariance matrices are related by the following
rotation matrix evaluated at the latitude/longitude of the standpoint (local origin).



Page 8

R  = 
















  sin    sin cos     cos cos 
cos    sin sin-    cos sin-
0           cos            sin-    

φλφλφ
φλφλφ

λλ
(4)

The matrix expression for the relationship between the two covariance matrices is:

t
ZYXune RR //// ∑=∑ (5)

RR une
t

ZYX //// ∑=∑ (6)

Points that are part of a network adjustment enjoy an inter-relationship described by correlation.
The correlation is especially significant for adjacent points that have been connected by a direct
measurement.  Correlation exists between points not directly connected but the influence drops
rapidly as the number of courses between points increases  (correlation is the reason cross-ties
serve to strengthen a network).  If the significant correlations between points are stored along
with the covariance matrix for each point, the local accuracy of one point with respect to the other
is readily computed along with the inverse direction and distance.  If correlations are not stored
(or if they are assumed to be zero), an inverse computation will readily provide the direction and
distance between points and the two endpoint covariance matrices will provide the basis of the
network accuracy associated with the relative differences.

Using Points Stored in the X/Y/Z Data Base:

Each stored X/Y/Z location is unique within the birdcage of orbiting GPS satellites.  Three
application modes for using the stored X/Y/Z locations include single point, (unique location for
inventory tag etc.), point-pair (used to create lines, surfaces, and objects), and “cloud” (mapping).
Even though stored as X/Y/Z, the location of any point can be readily expressed in latitude/
longitude, UTM, or state plane coordinates.  The uncertainty of a single point is given by the
datum accuracy as computed from the geocentric covariance matrix.  These uncertainties
(standard deviations, variances, and other covariance elements) can be viewed in either the
geocentric reference frame or in the local reference frame.  The geocentric reference frame is
more efficient for data storage and computerized manipulation but the local reference frame is
more convenient for viewing because horizontal and vertical is the human perspective.  A
benchmark will have a small standard deviation on the vertical component.  By contrast, a
horizontal control point will have small standard deviations on the east and/or north components.
A 3-D control point will have small standard deviations on all three components.

The point-pair application provides the relative location of one point with respect to another.  A
map is generated by extensive successive use of the point-pair mode and an accuracy statement as
applied to such a “cloud” of points is not addressed in this paper.  Although appropriate at some
point in the future, it is not intended here to initiate a discussion of National Map Accuracy
standards.

Specifically, in the point-pair mode, Point 1 is defined by X1/Y1/Z1 and Point 2 is defined by
X2/Y2/Z2 .  The matrix formulation of the 3-D geocentric inverse from Point 1 to Point 2 is:
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(7)

The matrix of coefficients to the variables is called the Jacobian matrix and the general error
propagation formulation in the form of equation (1) is:

tJJ 21→∆ ∑=∑ (8)

Using the Jacobian matrix of 1’s and 0’s from equation 7, having the geocentric covariance
matrix of Point 1 and Point 2 both available, and using the correlation between Point 1 and Point
2, the covariance matrix of the inverse is computed using equation (8) as:
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(9)

The off-diagonal sub-matrices reflect the correlation between Point 1and Point 2.  Datum
accuracy of Point 1 and Point 2 is included in equation (9) as their respective covariance sub-
matrices.

The following concise mathematical statements are the basis for the definitions of local accuracy
and network accuracy given earlier.

Local accuracy of the inverse between Point 1 and Point 2 is obtained by using the full
covariance matrix in equation (9).  Correlation between Point 1 and Point 2 is included.

Network accuracy of the inverse between Point 1 and Point 2 is obtained if the correlation
between Point 1 and Point 2 is either non-existent or taken to be zero.
Additional details for computing the inverse direction, distance, and standard deviations are
provided in Burkholder (1999).

Example:

The following example is hypothetical.  Figure 2 shows two HARN control points, a central
observation station, and three points on the face of a dam.  The goal is to monitor the location of
points on the dam to determine their stability and to document movement - if it exists.  Although
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other technology might be used, it is presumed static carrier phase GPS data were collected.  Of
the several ways to organize the sessions, the stations are occupied with 4 GPS receivers and non-
trivial baselines are defined as noted by the circled session numbers in Figure 2.  This
arrangement provides non-trivial baselines for the network adjustment with two moves – Unit A
goes to station F, then unit D goes to station B.

Session 1  - units at A, C, D, and E
Session 2 - units at C, D, E, and F
Session 3 - units at B, C, E, and F

In processing the GPS data, a minimally constrained network uses all the baselines but holds only
1 HARN station as the anchor.  Given appropriate internal network consistency and no outlying
residuals on the first adjustment, the network is readjusted holding both HARN stations.  If the
second constrained adjustment is acceptable and if the reference variance is near unity, the
covariance matrix (in this case, a 12x12) of the newly computed positions (parameters) is the
inverse of the normal equations coefficient matrix (Appendix B, Davis, et, al., 1981).  The
variances of the computed coordinates are on the diagonal, the point covariance elements are
adjacent to the diagonal (3x3 sub-matrices), and the correlation between points is given by the
remaining off-diagonal elements.

Notes regarding the network adjustment:

1. It is presumed X/Y/Z coordinates for the HARN stations are used.  If the coordinates of
each HARN station are held fixed, then the datum accuracy for the computed points is “with
respect to the HARN stations.”  In reality, each HARN station also has a small standard
deviation associated with its published position.  Technically, such uncertainties should be
included as a prerequisite to making a datum accuracy statement “with respect to NAD83.”

2. Each GPS vector is defined by ∆X/∆Y/∆Z components as determined from baseline
processing.

3. The covariance matrix of each baseline vector is used in developing the weights for the
adjustment.  An approximation would be to develop weights using only the standard
deviations of the ∆X/∆Y/∆Z components.  Some network adjustments are made using equal
weights for all components.  Project requirements should dictate which procedure is used.

4. If the computed reference variance is not close to unity, the covariance matrix of the
parameters should be multiplied by the computed reference variance.

Conclusions:

The deformation example shows how datum accuracy, network accuracy, and local accuracy are
all part of the same project.  This paper identifies concepts associated with various types of
spatial data and spatial data accuracies.  It goes on to describes how those concepts fit together in
terms of the GSDM.  The fundamental concepts are not new but using the GSDM is
revolutionary.  The difference is building and using a 3-D database having a single origin for
spatial data instead of building and using a database having disparate origins for horizontal and
vertical data.  Rules of solid geometry and vector algebra are globally applicable in the 3-D
environment.  That means one set of equations is equally applicable worldwide and the necessity
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of keeping track of mapping equations and projection constants is enormously reduced.  An even
greater benefit is being able to compute standard deviations for each derived quantity.  But, best
of all, each user has the information readily available with which to answer the question,
“Accuracy with respect to what?”  Datum accuracy is with respect to the control held by the user
and equation (9) provides an unambiguous procedure for computing network accuracy and local
accuracy.

In writing this paper, it was intended for the logical development to move forward and it has.
Furthermore, the dam deformation example was included purposefully to raise the issue about
local accuracy.  In that case, the real question to be answered is, “Are the points stable or did the
points move?”  Local accuracy really should be used to answer those questions.  What about
datum accuracy or network accuracy?  Are they needed?  Not really.  Now suppose the two
HARN points are not HARN points at all, but well monumented points set in bedrock on ridges
on opposite sides of the canyon.  Instead of constraining the network to the NAD83, the code
phase position of the Central Station is used to anchor the entire network (a single point with
X/Y/Z coordinates and rather large standard deviations).  The datum accuracy for points in the
network will not be very good at all but the local accuracy between points is governed by the
quality of the connecting measurements.  And, the local accuracy between points “once removed”
from a direct connection is still governed by correlation between the points.

The digital revolution (Burkholder 2003) has had an enormous impact on the way spatial data are
generated, manipulated, stored, and used.  The original goal was to show how the GSDM could
be used to establish and make better statements about spatial data accuracy.  Ironically, the
argument has come full circle.  After building the case so carefully to start with high-quality
control points and to add quality components to obtain high quality datum accuracy points, it
turns out that is not required at all – depending upon the required answer, “With respect to what?”
It occurs to the author that many more similar applications are waiting to be discovered.  What,
for example, about describing the local accuracy of points generated with close-range
photogrammetry?  Or, what about optical tooling applications?  Research on these and other
issues should be interesting and fruitful.
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Figure 1 Schematic Showing Relationship of Spatial Data Elements
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Figure 2,  Example of Dam Deformation Network
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