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Abstract: 7 
Surveyors make measurements and process those data to compute positions.  Plane 8 
surveying uses two-dimensional (2-D) coordinates based on assumptions of a flat-earth. 9 
Plats, maps, and land boundary descriptions are prepared consistent with those 10 
assumptions and methods.  The client is well served and, over the years, many “local 11 
practice” businesses have functioned successfully.  But, as technology advances and as the 12 
scope of a project or service area gets larger, those flat earth assumptions become limiting 13 
and plane surveyors are exposed to new challenges.  Modern measurement systems 14 
evolved during the digital revolution and now routinely collect three-dimensional (3-D) 15 
digital geospatial data.  Likewise, computational processes now used in data reduction go 16 
well beyond the flat earth assumptions.  And, models for processing 3-D digital geospatial 17 
data have evolved from flat earth models to various ellipsoidal models to a plethora of map 18 
projections to 3-D models that support computations in 3-D space worldwide – e.g., the 19 
global spatial data model (GSDM).  This paper includes a comparison of three models used 20 
to determine a 3-D geodetic position based upon a simple total-station sideshot from a 21 
known station. The three methods are geodetic on the ellipsoid, state plane on a mapping 22 
grid, and geocentric in 3-D space.   23 
 24 
Introduction: 25 
Station “Reilly” (PID AI5445) is geodetic control monument on the campus of New Mexico 26 
State University (NMSU) in Las Cruces.  Used extensively by NMSU surveying engineering 27 
students, station “Reilly” was established as part of the New Mexico high-accuracy-28 
reference-network (HARN) and its position was published by the National Geodetic Survey 29 
(NGS) on the North American Datum of 1983 (1992) - NAD 83 (1992).  Although no longer 30 
referred to as a HARN station, NGS has subsequently published the position of “Reilly” on 31 
NAD 83 (2007) and NAD 83 (2011).  As a learning exercise, students occupied “Reilly” with a 32 
total-station surveying instrument, backsighted a known azimuth mark, turned the 33 
horizontal angle, and observed the slope distance to the target – a retro-reflector sitting on 34 
the desk of the NMSU Associate Dean of Engineering.  The height of the instrument (HI), 35 
height of target (HT), and zenith direction to the target were also observed.  This paper uses 36 
those data in three different models (geodetic, state plane, and geocentric) to compute an 37 
un-monumented 3-D geodetic position on the Associate Dean’s desk.  It appears that, with 38 
no loss of integrity, the geocentric model has advantages of simplicity not shared by the 39 
other two models.      40 
 41 
Models and Objective: 42 
Models provide a conceptual connection between the abstract and human experience.  43 
Some models – for example the flat-earth model - are simple and easy to use.  But spatial 44 
data models become more complex as needed to preserve the integrity of survey 45 
measurements and to account for geometrical relationships that extend beyond a local 46 
perspective. A general statement is, the “best” model is the simplest one that does not 47 
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sacrifice geometrical integrity.  Therefore, selection of the most appropriate spatial data 48 
model for a given application often involves a balance between simplicity and integrity.  The 49 
objective of this paper is to compare ease-of-use and the complexity of three computational 50 
procedures (models) that provide essentially identical answers for a position on the top of 51 
the NMSU Engineering Associate Dean’s desk:  52 

• Traditional geodetic computations on the ellipsoid. 53 

• NM Central Zone state plane coordinates. 54 

• Geocentric X/Y/Z values computed in 3-D space. 55 
 56 

Background, Control Values, and Measurements (Common to all three models): 57 
The office of the Associate Dean of Engineering at NMSU is on the ground floor of Goddard 58 
Hall on the NMSU campus.  Station “Reilly” is a ground level brass tablet set in the 59 
top/middle of a massive concrete vault in an open area next to Goddard Hall. The 2015 NGS 60 
data sheet lists the geodetic latitude and longitude position, state plane values, and 61 
geocentric earth-centered earth-fixed (ECEF) coordinates for station “Reilly.”  An 62 
approximate geoid height at “Reilly” is also listed on the data sheet.  For this comparison, 63 
the North American Vertical Datum 1988 (NAVD 88) elevation for station “Reilly” was 64 
determined from local first-order benchmarks using GPS and geoid modeling  – see  65 
http://www.globalcogo.com/ReilElev.pdf - and a finial on Skeen Hall about 240 meters 66 
westerly of station “Reilly” was sighted for azimuth orientation.  The azimuth to the finial 67 
was computed from 4 sets of Wild T-2 Polaris observations in 2001.  A Laplace correction 68 
obtained using the NGS program “Deflect99” was used to compute a geodetic azimuth from 69 
the observed astronomic azimuth.   70 
 71 
The following NAD 83 (2011) values were taken from the NGS data sheet.  72 
                             Geodetic  State Plane  Geocentric 73 
Station        ø =     32° 16’ 55.”93001 N    E = 452,506.490 m         X = -1,556,177.595 m  74 
“Reilly”       λ =   106° 45’ 15.”16035 W   N = 142,268.771 m        Y = -5,169,235.284 m 75 
          =  253° 14’ 44.”83965 E    Z =  3,387,551.720 m 76 
            Ellipsoid height       = 1,166.543 m 77 

      Geoid height (Geoid 12B)    =        -23.94 m  78 
       Grid scale factor       =   0.99992781 79 
      Convergence      =           -0° 16’ 09.”5 80 
 81 
 Other values used in the computations include: 82 
 GRS80 ellipsoid parameters:      a  = 6,378,137.000m and   e2  = 0.006694380023 83 
 Seconds per radian     spr  = 206,264.806247 84 

NAVD 88 elevation of “Reilly”     H      =     1,190.497 m 85 
 Geodetic azimuth from “Reilly” to finial on Skeen Hall  αBS     =     272° 11’ 09”  86 
 87 
Measurements: 88 
 EDM slope distance (corrected for temperature & prism off-set)       =     78.452 m 89 
 Angle right from finial to reflector on desk (mean of 4 sets D/R)       = 269° 23’ 08” 90 
 Zenith direction to center of reflector (mean of 2 sets D/R)       = 090° 54’ 08” 91 
 Height of instrument at “Reilly” (HI)          =      1.682 m 92 
 Height of target on desk (HT)           =      0.366 m 93 
 94 
 95 

http://www.globalcogo.com/ReilElev.pdf
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Equations and Computations: 96 
1. Geodesy computations on the ellipsoid: 97 

Equations for forward (also called “direct”) geodetic computations on the ellipsoid are given 98 
in sources such as Vincenty (1975 and 1980) and Jank and Kivioja (1980).  The equations 99 
used here are for one element of a geodetic line as described by Burkholder (2008) and 100 
based on the numerical integration method used by Jank and Kivioja (1980) who claim that 101 
millimeter accuracy of a computed position is maintained half way around the world when 102 
the individual line element used in the numerical integration is 200 meters or less.  Longer 103 
elements can be used on shorter lines while maintaining the same millimeter accuracy.  104 
Burkholder (2008) also describes a test for checking and assuring the accuracy of a geodetic 105 
forward computation.         106 

 107 
      𝜑𝑑𝑒𝑠𝑘 = 𝜑𝑅𝑒𝑖𝑙𝑙𝑦 +  ∆𝜑       (1a) 108 

 𝜆𝑑𝑒𝑠𝑘 =  𝜆𝑅𝑒𝑖𝑙𝑙𝑦 +  𝛥𝜆    See step-by-step equations below. (1b)  109 

 𝐻𝑑𝑒𝑠𝑘 = 𝐻𝑅𝑒𝑖𝑙𝑙𝑦 + 𝛥𝐻       (1c) 110 

 111 

 ∆𝜑" =
𝑆 cos 𝛼𝐺𝑒𝑜

𝑀
  𝑠𝑝𝑟          (2) 112 

 ∆𝜆" =  
𝑆 sin 𝛼𝐺𝑒𝑜

𝑁 cos 𝜑
 𝑠𝑝𝑟         (3) 113 

 ∆𝐻 = 𝐻𝐼 + 𝑆𝐷 cos 𝑍 − 𝐻𝑇 + (𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)   (4) 114 

 𝑆 = 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑆𝐷 ∗ sin 𝑍 ∗ 
𝑅𝑚

𝑅𝑚 +ℎ
   (5) 115 

 SD = Slope distance 116 
𝛼𝐺𝑒𝑜 = 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑎𝑧𝑖𝑚𝑢𝑡ℎ =  𝛼𝐵𝑆 + 𝑎𝑛𝑔𝑙𝑒 𝑟𝑖𝑔ℎ𝑡      (6) 117 

Z = zenith direction to target (mean of 2 D/R sets) 118 

HI = height of instrument 119 

HT = height of target 120 

𝑀 =  
𝑎(1−𝑒2)

(1− 𝑒2 𝑠𝑖𝑛2𝜑)1.5 Radius of curvature in the Meridian  (7) 121 

𝑁 =  
𝑎

√1−𝑒2 𝑠𝑖𝑛2𝜑
 Radius of curvature in the Prime Vertical  (8) 122 

𝑅𝑚 =  √𝑀 ∗ 𝑁    Gaussian mean radius    (9) 123 
 124 

Computations (use latitude and east longitude at station Reilly): 125 

𝑀 =  
6,378,137.00∗( 1−0.006694380023)

(1−0.006694380023∗ 𝑠𝑖𝑛2(32° 16′55."93001))1.5   = 6,353,629.826 m 126 

𝑁 =  
6,378,137.000

√1−0.006694380023∗𝑠𝑖𝑛2(32° 16′55."93001)
    = 6,384,235.531 m 127 

𝑅𝑚 =  √6,353,629.826 ∗ 6,384,235.532     = 6,368,914.294 m 128 

ℎ = 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑅𝑒𝑖𝑙𝑙𝑦,    from NGS data sheet  =        1,166.543 m 129 
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𝑆 = 78.452 ∗ sin(90° 54′08") ∗ 
6,368,914.294

6,370,080.837
   =             78.428 m 130 

𝛼𝐺𝑒𝑜 = 272° 11′09" + 269° 23' 08 − 360°    =       181° 34’ 17” 131 

∆𝜑" =  
78.428∗cos(181° 34′17")

6,353,629.826
∗ 𝑠𝑝𝑟    =       -2.”54514  132 

∆𝜆" =  
78.428∗sin(181° 34′17")

6,384,235.531∗cos (32° 16′55."93001)
∗ 𝑠𝑝𝑟 (East Δλ) =         -0.”08219 133 

∆𝐻 = 1.682 + 78.452 ∗ cos(90° 54′08") − 0.366   =           0.081 m 134 
(In this case, curvature and refraction is < 0.0005 m and is ignored.) 135 

 136 
And, the results are: 137 

𝜑𝑑𝑒𝑠𝑘 = 32° 16′55. "93001 − 2. "54514    =  32° 16’ 53.”38487 N   138 

𝜆𝑑𝑒𝑠𝑘 = 253° 14′44. "83965 - 0."08219     = 253° 14’ 44.”75746 E 139 
= 106° 45’ 15.”24254 W  140 

𝐻𝑑𝑒𝑠𝑘 = 1,190.497𝑚 + 0.081 𝑚 =    = 1,190.578 m   141 

2. State Plane Coordinate Computations – NM Central Zone: 142 
State plane coordinates are computed for the top of the desk and geodetic positions are 143 
computed from the state plane values.  Although the equations are not listed herein, the 144 
geodetic latitude and longitude are computed from state plane coordinates using the 145 
algorithm given in Stem (1989).  Elevation on the desk is computed the same way as used in 146 
the geodetic method.  Computation of state plane coordinates is: 147 

 148 
𝜑𝑑𝑒𝑠𝑘 =  Computed from NM Central Zone state plane coordinates.  (10a) 149 
𝜆𝑑𝑒𝑠𝑘 =  Computed from NM Central Zone state plane coordinates.  (10b) 150 
𝐻𝑑𝑒𝑠𝑘 = 𝐻𝑅𝑒𝑖𝑙𝑙𝑦 + 𝛥𝐻 (Same as in previous method.)   (1c) 151 

 152 
𝐸𝑑𝑒𝑠𝑘 =  𝐸𝑅𝑒𝑖𝑙𝑙𝑦 + 𝐻𝐷𝐺𝑟𝑖𝑑 ∗ 𝑠𝑖𝑛(𝐴𝑧𝐺𝑟𝑖𝑑)    (11)  153 

𝑁𝑑𝑒𝑠𝑘 =  𝑁𝑅𝑒𝑖𝑙𝑙𝑦 + 𝐻𝐷𝐺𝑟𝑖𝑑 ∗ cos (𝐴𝑧𝐺𝑟𝑖𝑑)    (12) 154 

 155 
Where: 156 

 𝐻𝐷𝐺𝑟𝑖𝑑 = 𝑆𝐷 ∗ sin(𝑍𝑒𝑛𝑖𝑡ℎ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) ∗ 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟  (13) 157 
 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑔𝑟𝑖𝑑 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  (14) 158 

 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑅𝑚

𝑅𝑚+ℎ
           (15) 159 

 𝐴𝑧𝐺𝑟𝑖𝑑 =  𝐴𝑧𝐺𝑟𝑖𝑑 𝑡𝑜 𝐵𝑆 + 𝑎𝑛𝑔𝑙𝑒 𝑟𝑖𝑔ℎ𝑡     (16) 160 
 𝐴𝑧𝐺𝑟𝑖𝑑 𝑡𝑜 𝐵𝑆 =  𝛼𝐺𝑒𝑜 𝑡𝑜 𝐵𝑆 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑎𝑡 "𝑅𝑒𝑖𝑙𝑙𝑦"   (17) 161 
 162 

Computations: 163 
 𝐴𝑧𝐺𝑟𝑖𝑑 𝑡𝑜 𝐵𝑆 = 272° 11′09" - (-00° 16' 09.5)   =    272° 27’ 19” 164 
 𝐴𝑧𝐺𝑟𝑖𝑑 𝑡𝑜 𝑑𝑒𝑠𝑘 = 272° 27′19" + 269° 23' 08 − 360°  =   181° 50’ 27” 165 

 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.99992781 ∗  
6,368,914.294

6,370,080.837
  =   0.999744695 166 

 𝐻𝐷𝐺𝑟𝑖𝑑 = 78.452 ∗ sin (90° 54′08") ∗  0.999744695  =         78.422 m 167 
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 𝐸𝑎𝑠𝑡𝑖𝑛𝑔𝑑𝑒𝑠𝑘 = 452,506.490 + 78.422 ∗ sin(181° 50′26. "6)   = 452,503.971 m 168 
 𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔𝑑𝑒𝑠𝑘 = 142,268.771 + 78.422 ∗ cos (181° 50′26. "6)   = 142,190.389 m 169 

𝐻𝑑𝑒𝑠𝑘 = 1,190.497 𝑚 + 0.081 𝑚    (same as before)  =     1,190.578 m  170 

Geodetic latitude and longitude for the New Mexico Central Zone NAD83 state plane 171 
coordinates give:  172 

 Latitude on Dean’s desk      =   32° 16’ 53.”38488 N 173 
 Longitude on Dean’s desk     = 106° 45’ 15.”24253 W 174 
 Elevation on Dean’s desk     = 1,190.578 m  175 
 176 
3. Geocentric earth-centered earth-fixed (ECEF) X/Y/Z coordinates: 177 

Equations for computing ECEF geocentric coordinates are found in Chapter 1 of 178 
Burkholder (2008) which describes the global spatial data model (GSDM). The equations 179 
and procedures can also be found in other geodesy texts.  When using the GSDM for 180 
geodetic computations, the computations are performed in 3-D space to obtain the 181 
geocentric X/Y/Z coordinate values. For purposes of comparison with the other two 182 
methods, the geocentric X/Y/Z coordinates need to be converted to geodetic latitude, 183 
longitude, and ellipsoid height.  Geoid heights are required to determine orthometric 184 
heights (elevation) from ellipsoid heights.  The NGS program, Geoid12B, was used to 185 
compute geoid heights and those geoid heights were used to compute the NAVD 88 186 
elevation on the desk. 187 

 188 
𝜑𝑑𝑒𝑠𝑘 = Computed from X/Y/Z geocentric ECEF coordinate values.  (18a) 189 
𝜆𝑑𝑒𝑠𝑘 =   Computed from X/Y/Z geocentric ECEF coordinate values. (18b) 190 
𝐻𝑑𝑒𝑠𝑘 = 𝐻𝑅𝑒𝑖𝑙𝑙𝑦 + 𝛥𝐻 Different than equation (1c)   (18c) 191 

 192 
  𝑋𝑑𝑒𝑠𝑘 =  𝑋𝑅𝑒𝑖𝑙𝑙𝑦 + ∆𝑋      (19) 193 

  𝑌𝑑𝑒𝑠𝑘 =  𝑌𝑅𝑒𝑖𝑙𝑙𝑦 + ∆𝑌      (20) 194 

  𝑍𝑑𝑒𝑠𝑘 =  𝑍𝑅𝑒𝑖𝑙𝑙𝑦 + ∆𝑍      (21) 195 

 196 
 ∆𝑋 =  −∆𝑒 sin 𝜆 −  𝛥𝑛 sin 𝜑 cos 𝜆 +  𝛥𝑢 cos 𝜑 cos 𝜆   (22) 197 
 ∆𝑌 =  ∆𝑒 cos 𝜆 −  𝛥𝑛 sin 𝜑 sin 𝜆 +  𝛥𝑢 cos 𝜑 sin 𝜆   (23) 198 
 ∆𝑍 =                          𝛥𝑛 cos 𝜑 +  𝛥𝑢 sin 𝜑    (24) 199 

Note: Equations (22) to (24) use north latitude & east longitude at Station “Reilly.”  200 
∆𝑒 = 𝑆𝐷 sin 𝑍 sin 𝛼𝐺𝑒𝑜       (25) 201 

 ∆𝑛 = 𝑆𝐷 sin 𝑍 cos 𝛼𝐺𝑒𝑜       (26) 202 
 ∆𝑢 = 𝑆𝐷 cos 𝑍 + 𝐻𝐼 − 𝐻𝑇      (27) 203 

As before: 204 
 𝑆𝐷 = 𝑠𝑙𝑜𝑝𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 205 
 𝑍 = 𝑧𝑒𝑛𝑖𝑡ℎ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 206 
 𝛼𝐺𝑒𝑜 = 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑡𝑜 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 𝑜𝑛 𝑑𝑒𝑠𝑘 =  𝛼𝐵𝑆 + 𝑎𝑛𝑔𝑙𝑒 𝑟𝑖𝑔ℎ𝑡   (6) 207 

 208 
Computations: 209 

 𝛼𝐺𝑒𝑜 = 272° 11′09" + 269° 23' 08" - 360°    = 181° 34’ 17” 210 
 ∆𝑒 = 78.452 sin(90° 54′08) * sin  (181° 34' 17")  =      -2.151 m 211 
 ∆𝑛 = 78.452 sin(90° 54′08) * cos  (181° 34' 17")  =    -78.413 m 212 
 ∆𝑢 = 78.452 cos (90° 54’ 08”) + 1.682 – 0.366    =       0.081 m 213 
 214 
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 ∆𝑋 = -(-2.151) sin(253°14’ 44.”83965) – (-78.413) sin (32°16’ 55.”93001) *  215 
cos (253° 14’ 44.”83965) + 0.081 cos(32° 16’ 55.”93001) *  216 
cos(253° 14’ 44.”83965) =     -14.152 m 217 

  218 
∆𝑌 = (-2.151) cos(253°14’ 44.”83965) – (-78.413) sin (32°16’ 55.”93001) *  219 

sin (253° 14’ 44.”83965) + 0.081 cos(32° 16’ 55.”93001) *  220 
sin(253° 14’ 44.”83965) =     -39.547 m 221 

 222 
 ∆𝑍 =  −78.413 cos (32° 16′ 55. ”93001)  +  0.081 sin  (32° 16′  55. ”93001)  223 
                    = -66.249 m 224 
 225 
 𝑋𝑑𝑒𝑠𝑘 =  −1,556,177.595 + (−14.152)  = -1,556,191.747 m 226 
 𝑌𝑑𝑒𝑠𝑘 =  −5,169,235.284 + (−39.547)   = -5,169,274.831 m 227 
 𝑍𝑑𝑒𝑠𝑘 = 3,387,551.720 + (−66.249)   =  3,387,485.471 m 228 
 229 

These geocentric X/Y/Z values need to be converted to latitude, longitude, and ellipsoid 230 
height (and to elevation) for a comparison to be made. The longitude computation is 231 
very straight forward but the latitude and ellipsoid height computations are more 232 
challenging.  Techniques such as one of those described in Meyer (2010) can be used 233 
with excellent results. But the iteration method used here provides fully rigorous results 234 
with fewer mathematical gymnastics. 235 
 236 
Since the geocentric X and Y values are both negative, the east longitude lies in the third 237 
quadrant of the equator and is computed (with due regard to radian units) as: 238 

𝜆 = 180° + 𝑎𝑡𝑎𝑛 (
𝑌

𝑋
)  =  East longitude   (28) 239 

 240 

 Longitude = 180° + 𝑎𝑡𝑎𝑛 (
−5,169,274.831

−1,556,191.747
)   = 253° 14’ 44.”75745 E   241 

        = 106° 45’ 15.”24255 W 242 
 243 
Closed form equations for computing geocentric X/Y/Z coordinates from latitude, 244 
longitude, and ellipsoid height are called a BK1 transformation in Burkholder (2008) and 245 
given as: 246 

𝑋 =  (𝑁 + ℎ) cos 𝜑 cos 𝜆     (29) 247 
   𝑌 =  (𝑁 + ℎ) cos 𝜑 sin 𝜆     (30) 248 
  𝑍 = [𝑁(1 − 𝑒2) + ℎ] sin 𝜑     (31) 249 
  Where:  N = Radius of curvature in Prime Vertical (8) 250 
    h  = Ellipsoid height     251 

A mathematical inversion of equations (29), (30), and (31) can be used to compute the 252 
latitude and ellipsoid height from the X/Y/Z coordinates.  That inversion is also closed 253 
form but must be solved using iteration.  Solving those inverted equations is referred to 254 
as a BK2 transformation and given in Chapter 6 Burkholder (2008) as: 255 

𝑃 =  √𝑋2 + 𝑌2 , an intermediate value    (32) 256 

𝜑0 = arctan (
𝑍

𝑃 (1− 𝑒2)
), “seed” value for subsequent use. (33) 257 

𝑁0 =  
𝑎

√1− 𝑒2 𝑠𝑖𝑛2 𝜑0
 , needed in next step   (34) 258 

  𝜑𝑖 = arctan [
𝑍

𝑃
(1 +  

𝑒2𝑁0 𝑠𝑖𝑛𝜑0

𝑍
)], second & subsequent values (35) 259 
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  𝑁𝑖 =  
𝑎

√1− 𝑒2 𝑠𝑖𝑛2 𝜑𝑖
 , second and subsequent values  (36) 260 

  261 
Once the solution for latitude has converged sufficiently, the ellipsoid height is 262 
computed using the latest values of ø and N: 263 

  ℎ =  
𝑃

cos 𝜑
− 𝑁       (37) 264 

 265 
Using a spreadsheet, the latitude for the top of the Dean’s desk is computed as: 266 
Iteration   Latitude (rad)    Difference           Normal     Difference  267 
    0            0.563418945242       6,384,570.81481 m 268 
    1            0.563418550755 -0.000000394487     6,384,235.29594 m -335.51888 m 269 
    2           0.563418390041 -0.000000160715    6,384,235.29283 m     -0.00311 m 270 
    3           0.563418389270 -0.000000000770    6,384,235.29281 m     -0.00002 m 271 
    4           0.563418389267 -0.000000000004     6,384,235.29281 m     -0.00000 m 272 
 273 
The latitude is computed by converting radians to degrees-minutes-seconds using the 274 
conversion spr  = 206,264.806247096 seconds/radian. 275 
 276 

ø = 0.563418389267 * 206,264.806247 = 116,213.”384899 =  32° 16’ 53.”38490  277 
 278 
Twelve decimal places of latitude or longitude in radians translates to 6 decimal places 279 
of seconds when expressed as degrees, minutes, and seconds.  More decimal places are 280 
included in the latitude tabulation than can be justified.   This is done to show where 281 
differences begin to occur. It is safer to use more iterations than needed than to stop 282 
the iteration prematurely.  Good judgment is essential in reporting and interpreting 283 
results.  In this case, the comparison between models is made at 5 decimal places of 284 

seconds for latitude and longitude (0.”00001   0.0003 m) but, due to original 285 
observations being limited to the millimeter, the computed position can only be 286 
justified at 5 decimal places of seconds. 287 

 288 
To compute the elevation (orthometric height) of the top of the Dean’s desk, the 289 
ellipsoid height must be converted to elevation.  Milbert (1991) states that modeled 290 
geoid height differences are more accurate than a modeled geoid height at a single 291 
point.  Therefore, two alternates are included for computing the NAVD 88 elevation of 292 
the top of the desk: 293 

 294 
1. Apply the modeled geoid height at the desk as obtained from the NGS Geoid 295 

12B model.  This method relies on the absolute value of modeled geoid height. 296 
 297 
𝐻𝑑𝑒𝑠𝑘 =  ℎ𝑑𝑒𝑠𝑘 − 𝑔𝑒𝑜𝑖𝑑 ℎ𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑠𝑘    (38) 298 
 299 

2. Determine the geoid height at both station “Reilly” and on the desk using the 300 
NGS Geoid 12B model.  The difference in geoid height combined with the 301 
difference in ellipsoid height should provide a stronger solution than using only 302 
a single modeled geoid height. 303 

 304 

𝐻𝑑𝑒𝑠𝑘 =  𝐻𝑅𝑒𝑖𝑙𝑙𝑦 + (ℎ𝑑𝑒𝑠𝑘 − ℎ𝑅𝑒𝑖𝑙𝑙𝑦) − 305 

                                            (𝑔𝑒𝑜𝑖𝑑 ℎ𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑠𝑘 − 𝑔𝑒𝑜𝑖𝑑 ℎ𝑒𝑖𝑔ℎ𝑡𝑅𝑒𝑖𝑙𝑙𝑦)  (39) 306 
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 307 
Using NGS interactive software, Geoid12B computations of geoid heights at Station 308 
“Reilly” and on the Dean’s desk are: 309 

 310 
 Geoid height at Station “Reilly”      -23.943 m 311 
 Geoid height on Dean’s desk     -23.944 m 312 
 313 

Elevation on Dean’s desk using the alternative 1: 314 
 𝐻𝑑𝑒𝑠𝑘 = 1,166.624 𝑚 − (−23.944 𝑚) =    1,190.568 m 315 
 316 

Elevation on Dean’s desk using alternative 2: 317 
 318 

𝐻𝑑𝑒𝑠𝑘 = 1,190.497 + (1,166.624 −  1,166.543) − (−23.944 − (−)23.943) = 1,190.579 m 319 
 320 
 321 
Summary of Results: 322 
A comparison of geodetic position and elevation of the top of the Dean’s desk for all three 323 
methods is: 324 
   Geodetic  State Plane  3-D Geocentric 325 

Latitude          32° 16’ 53.”38487 N         32° 16’ 53.”38488 N        32° 16’ 53.”38490 N 326 
Longitude       106° 45’ 15.”24254 W     106° 45’ 15.”24253 W     106° 45’ 15.”24255 W 327 
Elevation              1,190.578 m  1,190.578 m               1,190.568 m  (alt. 1) 328 

         1,190.579 m (alt. 2) 329 
 330 
Conclusions and Comments: 331 
1. All three methods yielded latitude/longitude values within 0.00003 seconds of arc – that 332 

is agreement within about 0.001 meter – consistent with the quality of the 333 
observations. 334 
 335 

2. Elevations derived from the geodetic and state plane methods are identical.  There are 336 
two geocentric solution elevations.  The first alternative uses the modeled absolute 337 
geoid model value for the top of the desk and the result agrees with other methods 338 
within 0.011 meters.  The second alternative uses ellipsoid height difference along with 339 
modeled geoid height difference and the result agrees with the first two methods 340 
within 1 millimeter.  That illustrates the importance of using geoid modeled differences 341 
(relative) as opposed to using absolute geoid heights.      342 
 343 

3. The geodetic model uses differential geometry equations on the ellipsoid. Although 344 
those geodesy equations are straight-forward, they can be intimidating to persons not 345 
familiar with same.  But, all data and equations are listed herein. 346 
 347 

4. Except maybe for needing to use grid azimuth and grid distance, Equations (11) and (12) 348 
in the state plane model are quite familiar to plane surveyors.  Equations (13) to (17) 349 
deal with concepts of grid scale factors, elevation factors, combined factors, and 350 
convergence. Although not needed or used in the 3-D model, they are required when 351 
using the state plane model.   352 
 353 
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5. The process of computing latitude and longitude from state plane coordinates is rather 354 
complicated and the equations are not listed.  However, those computations have 355 
become ingrained in modern practice and software is readily available for making those 356 
conversions.  Stem (1989) is an excellent source for equations and algorithms for NAD 357 
83 state plane coordinate conversions.   358 
 359 

6. The geocentric computations are performed in 3-D space using rules of solid geometry.  360 
The equations for geocentric computations are readily available in Burkholder (2008) 361 
and other sources.  Additional on-line resources are available as follows: 362 

 363 
www.globalcogo.com/GM008.pdf  Gives equations for ø/λ/h to X/Y/Z (BK1) 364 

 365 

www.globalcogo.com/GM009.pdf Gives equations for X/Y/Z to ø/λ/h (BK2) 366 

 367 

www.globalcogo.com/GM010.pdf Diagrams illustrating BK1 & BK2 comps. 368 

 369 

www.globalcogo.com/DD-BK2.xlsx    Excel file for Deans Desk BK2 comps. 370 

 371 

www.globalcogo.com/DD-BK2.pdf  PDF file of Deans Desk BK2 comps. 372 

 373 

7. The BK2 computation is the most difficult part of the GSDM geometrical computations.  374 
The BK1 transformations from latitude/longitude/height to geocentric X/Y/Z 375 
coordinates are fairly straight forward but the reverse process (BK2) inverts those 376 
equations.  The solution is also closed form, but these equations must be iterated for a 377 
solution.  Iteration is used in the above spread sheet file for BK2 computations. 378 

 379 
8. Other alternatives to the iteration procedure used in the BK2 spreadsheet include: 380 

• T. Vincenty (1980) devised a non-iterative algorithm as used in the following link - 381 
www.globalcogo.com/GM009.pdf .  Comparisons have been made using these 382 
equations with excellent results – even out to satellite heights. 383 

• Equations (28) to (35) of Meyer (2010) can be used for a reliable non-iterative 384 
computational alternative.    385 

 386 
9. This author concludes that the 3-D GSDM can be used to perform most 3-D spatial data 387 

computations in 3-D space with greater ease and efficiency than performing similar 388 
computations on the ellipsoid or using a map projection such as state plane or UTM 389 
coordinates.  Furthermore, there need be no sacrifice of geometrical integrity when 390 
using the GSDM.   391 

 392 
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