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Introduction

Spatial data representing real world locations are three-dimensional (3-D).
Modern measurement systems collect data in a three-dimensional environment. This
paper defines and describes a global spatial data model (GSDM) which is a collection
of mathematical concepts and procedures that can be used to collect, organize, store,
process, manipulate, and evaluate 3-D spatial data more efficiently than can be done
using a 2-dimensional conformal mapping model combined with 1-dimensional
elevations. Measurements of quantities such as angles, length, time, current, mass,
and temperature are used to determine spatial relationships which are stored for
subsequent use and reuse. In the past, records of such measurements were written in
field books, logs, or journals and the spatial information was compiled into an analog
map which often served two purposes. The map could be both the primary storage
medium for the spatial information while simultaneously being the end product of the
data collection process. Spatial data are now collected, stored and manipulated
digitally in an electronic environment and the primary storage medium is rarely the
end product. Instead, the same digital data file can be duplicated repeatedly and used
to generate and/or support many different spatial data products. In either case,
whether developing an analog or digital spatial data product, algorithms are the
mathematical rules used to manipulate measurements and spatial data to obtain
meaningful spatial information. In addition, the quality of spatial information is
dependent upon the quality of the original measurement, completeness of the required
information and appropriateness of the algorithms used to manipulate the data. The
GSDM includes both the algorithms for processing spatial data and mechanisms which
can be used to provide a defensible statistical description of spatial data quality.
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Most of the concepts described herein were developed by others. For
example, Appendix C in Bomford (1971) is titled "Cartesian Coordinates in Three
Dimensions." Leick (1990 & 1995) defines the 3-D Geodetic Model, Mikhail (1976)
provides a comprehensive discussion of functional and stochastic models, and when
discussing models, Moritz (1978) comments on the simplicity of using the basic
global rectangular X/Y/Z system without an ellipsoid. When the aforementioned
concepts are combined in a systematic way with particular attention to the manner in
which spatial data are used, the synergistic whole--the GSDM--appears to be greater
than the sum of the parts.

Neither is the concept of a GSDM new. Seeber (1993) states that the concept
of a global three-dimensional polyhedron network was purposed by H. Burns as early
as 1878. The difference now is that the GPS and other modern technology have made
a global network practical and the polyhedron need not be limited to earth-based
points. It is further suggested that the GSDM is an appropriate model for describing
the true instantaneous positions of a global network of continuously operating
reference stations (CORS) computed in real time. An adopted mean position for each
CORS will serve the needs of most users, but corrections for short term variations
caused by earth tides and long term continental drift differences could be available to
those needing them. It is acknowledged however, that a space-fixed inertial reference
system is more appropriate for describing the motion of earth satellites.

The Global Spatial Data Model (GSDM)

The GSDM is a collection of mathematical concepts and procedures which can
be used to manage spatial data both locally and globally. It consists of a functional
model which describes the geometrical relationships and a stochastic model which
describes the probabilistic characteristics--statistical qualities--of spatial data. The
functional part of the model includes equations of geometrical geodesy and rules of
solid geometry as related to various coordinate systems and is intended to be
consistent with the 3-D Geodetic Model described by Leick (1990 & 1995) with the
following exception; the GSDM, being strictly spatial, does not accommodate gravity
measurements but presumes gravity affects are appropriately accommodated before
data are entered into the spatial model. The stochastic portion of the GSDM is an
application of concepts described by Mikhail (1976).

© April, 1997 by Earl F. Burkholder 2 Circleville, Ohio 43113



Although the GSDM described herein makes no attempt to accommodate non-
Euclidean space or concepts, it does provide a simple universal foundation for many
disparate coordinate systems used in various parts of the world and offers advantages
of standardization for spatial data users in disciplines such as those listed in Figure 1.
Hawking (1988) describes the search for a Grand Unification Theory (GUT) for the
field of physics which will accommodate and adequately explain observations of
physical phenomena from the very small to the extremely large. The extent to which
the GSDM becomes the GUT of spatial data will be determined by its adoption and
use world-wide.

The Functional Model Component

The functional model component of the GSDM is based upon a three-
dimensional right-handed rectangular cartesian coordinate system with the origin
located at the earth’s center of mass. The X/Y plane lies in the equatorial plane with
the X-axis at the 0° (Greenwich) meridian. The Z-axis coincides with the mean spin
axis of the earth as defined by the Conventional Terrestrial Pole (Leick, 1990). This
geocentric coordinate system is called an earth-centered earth-fixed (ECEF) coordinate
system by the United States Defense Mapping Agency (DMA, 1987) and is widely
used by many who work with global positioning system (GPS) and related data.

Rules of solid geometry and vector algebra are universally applicable when working
with ECEF coordinates and coordinate differences.

As shown in Figure 2A, the unique 3-dimensional position of any point on
earth or near space is equivalently defined by traditional latitude/longitude/ellipsoid
height coordinates or by a triplet of X/Y/Z coordinates expressed in meters. Due to
the large distances involved, the X/Y/Z coordinate values can be quite large but
personal computers (PC’s) operating in double precision routinely handle 15
significant digits and 12 significant digits will accommodate all ECEF coordinate
values within the "birdcage" of GPS satellites down to 0.1 mm. Some users may
object to working with such large coordinate values but, as shown in Figure 2B, such
objections will likely become inconsequential to the extent end user applications are
designed to utilize coordinate differences (much smaller numbers and fewer digits).

Figure 3 is a GSDM schematic which illustrates relationships between the
ECEF coordinate system and various other coordinate systems commonly used in
connection with spatial data. A key feature on the diagram is a rotation matrix (Leick
1990 & others) used to convert AX/AY/AZ coordinate differences to local Ae/An/Au
coordinate differences at any point (local origin) specified by the user. Since a vector
in 3-dimensional space is not altered by moving the origin or by changing the
orientation of the reference coordinate system, a vector defined by its geocentric
AX/AY/AZ components is equivalently defined by local components and the rotation
matrix is the mechanism which efficiently transforms a global perspective into a local
one. The transpose of the rotation matrix is used to transform local components of a
space vector to corresponding geocentric components.

© April, 1997 by Earl F. Burkholder 3 Circleville, Ohio 43113



Global Spatial Data Model - GSDM

(4 Universal 3-D Model for Spatial Data)

The Global Spatial Data Model provides a simple, universal 3-
dimensional mathematical foundation for the National Spatial
Data Infrastructure (NSDI) which supports Geographic Informa-
tion System (GIS) database applications in disciplines such as:
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Figure 1, The Global Spatial Data Model (GSDM)
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With regard to Figure 3, the functional model includes equations for

transforming spatial data described by coordinates in one numbered box to equivalent
expression in a different coordinate system. A description of the numbered boxes is:

®©

The geocentric X/Y/Z coordinates are the basis for all other coordinate values
obtained from the GSDM. These are the defining values stored for each point
in a digital spatial data file. Coordinate values in other coordinate systems are
derived from the stored ECEF coordinates using algorithms which have been
tested and proven accurate for a specified level of computational precision.
Meter units, universal rules of solid geometry and vector algebra, and a linear
adjustment model are features of working with this part of the GSDM.

Geodetic coordinates of latitude and longitude combined with ellipsoid height
can define a three-dimensional position with the same precision and exactness
as geocentric X/Y/Z coordinates. Equations are listed in a subsequent section
by which coordinate values in one box can be converted to equivalent values in
another. Use of angular sexagesimal units (degrees, minutes, and seconds) on
the ellipsoid mixed with length units of meters for height makes 3-dimensional
computation more complicated than when using ECEF rectangular coordinates.

Historically, horizontal coordinates of latitude and longitude have been
combined with vertical elevations when mapping features on or near the
earth’s surface. The generic zero reference surface for elevation has been the
geoid (or mean sea level) which admits to a physical definition but, as it turns
out, is very difficult if not impossible to find. As a result (Zilkoski et al,
1992), an arbitrary reference surface which approximates, but does not define,
mean sea level was selected for the North American Vertical Datum of 1988.

Geoid height is defined as the difference between ellipsoid height and
elevation. With any two of the three elements known, the third can be found.
If reliable ellipsoid height for a point (from GPS data) is combined with an
appropriate geoid height (from geoid modeling), it is possible to obtain high
quality orthometric height (elevations) from the GSDM. Appropriate use of
standard deviations for the constituent components will provide a statistical
assessment of the quality of such elevations.

Map projections were invented to address the challenge of representing a
curved earth on a flat map. Conformal projections in particular have been
used in surveying and mapping to precisely define a 2 dimensional relationship
between latitude/longitude positions on the earth and equivalent plane
coordinate positions on a flat map. The state plane coordinate systems
implemented in the United States and the world-wide use of UTM coordinates
represent systematic use of map projections.

It is important to note however, that elevations combined with map projection
x/y (or north/east) plane coordinates is not an appropriate 3-dimensional
rectangular model for two reasons:
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a. Conformal projections are well defined in two dimensions only. There
is no mathematical definition of elevation in conformal mapping.

b.  The zero reference surface for elevation (approximated by sea level) is
a non-regular curved surtace. Three-dimensional rectangular integrity
is preserved only so long as a flat earth can be safely assumed. These
coordinates are therefore referred to a pseudo 3-D coordinates.

An important consideration when using state plane coordinates is the
relationship of the grid inverse distance to actual ground-level horizontal
distance. In applications such as highway centerline stationing the difference
between grid and ground distance quickly becomes too great to ignore.

Project datum coordinate systems were invented to accommodate the
difference. Lack of standardization is an issue when considering project datum
coordinates. For a summary of comments from 46 out of 50 state DOT’s on
the grid/ground distance difference, see Appendix III of Burkholder (1993).

@ Global positioning system (GPS) technology has been a driving force behind
use of three-dimensional spatial data and helps create the demand for a
GSDM. The primary output of a GPS survey is a 3-dimensional vector
defined by its AX/AY/AZ components. Because existing control stations were
defined with geodetic coordinates of latitude and longitude (and other reasons),
it was natural to continue building a 2-dimensional network using 3-
dimensional measurements. And there certainly are cases where that practice
can still be justified. But, the GSDM defines an environment in which the full
value of three-dimensional data can be used to build high quality three-
dimensional networks without being encumbered by many of the complex
equations found in classical geodesy. Another benefit is that the stochastic
model lends itself to implementation in the rectangular 3-dimensional
environment more readily than in the latitude/longitude/height system.

The local geodetic horizon (Trimble 1990) is essentially the same as the local
geodetic frame defined more precisely by Soler and Hothem (1988) and shares
many similarities with local plane surveying practice. The primary difference
is that "up” is defined by the ellipsoid normal instead of the piumb line. That
difference is largely inconsequential except in cases where very high precision
is required, the slope of the geoid is severe and many total station setups are
required to make a survey tie between 3-D GPS (gravity-independent) control
stations. Another difference with the GSDM is that the origin moves with the
observer because one is working with local coordinate differences with respect
to the user specified standpoint.

When working with the Ae/An components, the horizontal distance is in the
tangent plane through the standpoint and is the same horizontal distance plane
surveyors have been using for generations. It is also the same as HD(1) as
described in Burkholder (1991). Understandably, with a unique tangent plane
at each standpoint, the tangent plane from Point A to Point B is slightly
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different that the tangent plane from Point B to Point A. But, geometrical
integrity in 3 dimensions is preserved by the GSDM.

The azimuth from standpoint to forepoint obtained from arctan (Ae/An) very
nearly equals the geodetic azimuth from standpoint to forepoint and is
described more fully in Burkholder (1997). Most importantly, the GSDM
gives the correct azimuth between each pair of points. The forward azimuth
differs from the back azimuth due to convergence of the meridians. The
GSDM competently provides the correct answer in each case.

@ P.0O.B. Datum Coordinates is a feature within the GSDM which accommodates
long established local plane surveying practice without compromising
geometrical integrity. P.O.B. Datum Coordinates permit the user to select any
point in the data base as an origin. The 3-dimensional location of each
additional point selected is listed with respect to the Point-of-Beginning
(P.O.B.). Admittedly, this practice makes little sense for very large distances,
but these local coordinate differences can be treated in the same manner as
local plane coordinates and used on survey plats. Horizontal distances are in
the tangent plane through the P.O.B. and azimuths are with respect to the
meridian through the P.O.B. If surveys of adjacent tracts do not use the same
P.O.B. there will be two azimuths for a common line (the difference is the
amount of convergence between the two P.O.B.’s). However, if the P.Q.B. is
the same for both tracts, they will share a common basis of bearing - the
meridian through the P.O.B.

Although suggested as a secondary means of obtaining elevation, the standard
curvature and refraction correction, equation 5.7 of Davis, et al. (1981), can
be combined with the "up” component to obtain elevation differences between
standpoint and forepoint. The primary method for obtaining elevation relies
on accurate geoid height and ellipsoid height.

Spatial data measurements with conventional total station surveying instruments
include slope distances, vertical (or zenith) angles, and determinations of
bearings or azimuths. These measurements are used to compute local geodetic
horizon coordinate differences of Ae/An/Au. In reality the measurements are
plumb line referenced while the GSDM stipulates the results be normal based.
The difference is small, but important. Procedures for making Laplace
corrections (current standard practice) can be implemented as required.

Equations for moving between various boxes are listed in the next section and
keyed to the circled letters shown in Figure 3.
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The Stochastic Model Component

The stochastic component of the GSDM is based upon storing the
variance/covariance matrix associated with the geocentric X/Y/Z rectangular
coordinates which define the location of each stored point. Standard
variance/covariance propagation (Mikhail 1976) is used to determine the local
east/north/up variance/covariance matrix of any point on an "as needed" basis by the
user (this minimizes storage requirements). The same basic procedure is extended to
other functional model computations and provides a statistically defensible method for
tracking the influence of random errors to any derived quantity. In particular, the
user can look at the standard deviation of a coordinate position (by individual
component) in either the geocentric or local reference frame. The standard deviation
of other derived quantities such as distance, azimuth, slope, area, or volume can be
obtained using the same procedure for the functional model equations. An algorithm
for 3-D coordinate computation and error propagation is given in Appendix A.

BURKORD™ - Software and Data Base

Prototype software for performing 3-dimensional coordinate geometry utilizing
both the functional and stochastic components has been written and is called
BURKORD™. An example of using BURKORD™ to perform standard 3-D
computations is given in Appendix B. The term BURKORD™ applies specifically to
the software which can be purchased from the author. BURKORD™ also applies as
an adjective to describe a 3-dimensional data base built upon and utilizing the
concepts and procedures described herein. A license to use the BURKORD™ name
and the GSDM concepts as described herein to build a BURKORD™ Data Base can
be purchased from Global COGO, Inc. of Circleville, Ohio.

Summary

The GSDM gives each user both control and responsibility. If bad information
is used or if good information is used inappropriately, unreliable answers can be
obtained. However, the opposite case is the important one. The GSDM defines a
model and computational environment which can be used to manage spatial data
efficiently. Each user has the option (control) of establishing criteria which must be
met before spatial data can be used for a given purpose. The concept of Meta Data is
important in establishing and preserving the credibility of spatial data (responsibility),
but standard deviation (in any or all components) is a very efficient method for
evaluating the quality of spatial data. Once the X/Y/Z position of a point is defined
along with its variance/covariance matrix, the spatial data can be exchanged in a very
compact format. The same solid geometry equations and error propagation are
equally applicable world-wide and the mathematical procedures are already proven
and accepted. The challenge is for the global community of spatial data users to
discuss and reach consensus on details for implementation. However, the model is
already defined and can be implemented immediately to build a BURKORD™ data base.
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APPENDIX A

Algorithm for the Global Spatial Data Model

Functional Model:

The following symbols are defined and used as:

X/Y/Z = Geocentric right-handed rectangular coordinates
AX/AY/AZ = Geocentric coordinate differences

e/n/u = Local right-handed rectangular coordinates

Ae/An/Au = Local coordinate differences

#/Nh = Geodetic latitude/longitude (east) and ellipsoid height
a&b = Semi-major & semi-minor axes of reference ellipsoid
f = Flattening of reference ellipsoid

e? = Eccentricity squared of reference ellipsoid; e* = 2f - f
N = Length of ellipsoid normal, also used for geoid height
r = Spatial distance from origin to point X/Y/Z

P = Projection of r to equatorial plane

a’b’h’ ¢’ = Intermediate computational values used by Vincenty
T&U = Intermediate computational values used by Vincenty

S = Spatial slope distance between standpoint & forepoint
a = Geodetic azimuth at standpoint to forepoint

zorV = Zenith direction or vertical angle to forepoint

H = Orthometric height (elevation)

AN/Ah/AH = Changes in geoid, ellipsoid, and orthometric heights
c+r = Combined correction for curvature and refraction
HD(1) = Ground level horizontal distance, see Burkholder (1991)
Notes:

1. All distances are in units of meters.
2. Where two points are concerned, the standpoint is indicated by the
subscript 1 while the forepoint is indicated by the subscript 2.
The following equations are keyed to the circled letters shown in Figure 3.

@ Forward and Inverse Computations using geocentric coordinates:

Forward Inverse
X, = X, + A&X AX = X, - X, 1) & (2)
Y, = Y, + AY AY = Y, - Y, 3) & @)
Z, = Z, + AZ AZ = Z, - Z, (5) & (6)
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Convert geodetic latitude/longitude/ellipsoid height to geocentric X/Y/Z:

N = 2 @)
X = (N + h)cosd cosi . ®
Y = (N +h)cos¢ sind | ®
Z = (N1 -¢€? +h)sind (10)

Convert geocentric X/Y/Z to geodetic latitude/longitude/ellipsoid height:

It is difficult to invert the equations in Bl to obtain a closed form solution. A
very good closed form approximation (which breaks down for very large
values of ellipsoid height) is given on page 232 by Hofmann-Wellenhof et al
(1992). Another option (page 225, Leick 1995) is to iterate equations (12) and
(13) for an "exact" solution (assume N = 0 for first iteration and stop when h
no longer changes by a significant amount).

A = tan (}l(’) (11)
- Z e%Nsiné
= —_—_ ] e T F
¢ = tan o ( Z ) (12)
oo ¥X2¥ (13)
cosd

Another option is to use a precise "once through" approximation by Vincenty
(1980) as:

b = a(l - 5 14)
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PZ

= X% +7Y? rr= p?+ 2? (15) & (16)
2
. @bz
r’ )
= a+h, b’ = b+ h (18) & (19)

, leth'az? - PY

2
s . [a')(2

e (b/] (P) : 4 a* (20)

cost¢/ = L sing/ = cos¢/tang/ Q1) & (22)
1 + tanzd/

7o P hos Uy - Z-hsing¥ 23) & (24)
a? b?

Bo= e JT+U-1 (25)
2l T U

a b

6 - wnt|(GFC- e2hsin¢/)' (26)
5 P

A = tan’! -Z)
X @7

The conversion between Geocentric Coordinate Differences and Local
Geodetic Horizon Coordinate Differences can be accomplished very efficiently
with a rotation matrix or the conversions can also be done using individual
equations for each component. Both methods are presented.

Cl.

Geocentric Coordinate Differences can be converted to Local
Coordinate Differences using the matrix form of equation (28) (Leick,
1995, Equations 7.9 and 7.10) or individually by component using
equations (29), (30) and (31).
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Ae -sin 4 cos 0 |]1AX
An| = |-sin¢pcos A -singsini cosp| |AY

Au cospcosd cos@sind sing||AZ @9
Ae = -AXsind + AY cosA (29)
An = -AXsingcosd - AYsingsini + AZcos¢ (30
Au = AXcosgcosd + AYcosgsind + AZsing 31

C2.  Local Geodetic Horizon Coordinate Differences can be converted to
Geocentric Coordinate Differences in similar fashion using either the
matrix form in equation (32) or individually by component using equations
(33), (34), and (35). See Burkholder (1993).

AX -sind -singcosi cosgcosd||Ae
AY| = | cosA ~-singsind cosgsini||An (32)
AZ 0 cos ¢ sin ¢ Au
AX = -Aesini - Ansingcosid + Au cospcos i 33)
AY = Aecosi - Ansingsind + Au cos¢sin i (34)
AZ = Ancos¢ + Au sing 35)

Local Geodetic Horizon Coordinate Differences are computed from terrestrial
observations with equations (36), (37) and (38) (corrected as necessary for
instrument calibration, atmospheric conditions, polar motion and local
deflection-of-the-vertical. See Burkholder (1993)).

Ae = Ssinzsine = HD(l) sina (36)
An = S Sinz cosa = HD(I)COS“ (37)
Au = § cosz (38)
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@ Equations (1) through (38) follow rules of solid geometry and vector algebra
and can be used to define and express spatial relationships either globally or
locally without loss of geometrical integrity. However, (except for possible
corrections due to deflection-of-the-vertical) gravity and level surfaces are not
a part of the foregoing discussion. Given the importance of determining
elevations (and the direction water will run), the orthometric height--elevation
of a point--is obtained from geocentric coordinates by way of ellipsoid heights
and geoid heights using equation (39).

H = h-N (39)

At the risk of oversimplifying a complex issue, equation (39) is very useful for
computing elevations, but it presumes accurate geoid heights are known. In
reality, a better method is to use a known elevation at point 1 along with
observed ellipsoid height difference from GPS measurements and modeled
geoid height difference from a model such as GEOID96. In that case, the
elevation of point 2 is:

H2 Hl + AH = Hl + Ah - AN (40)

i

H, Hy + (hy = k) - (N, - N)) (41)
Equations (40) and (41) are equivalent and very useful, but still limited by the
accuracy of available information. The prudent user understands that in all
cases, the value of the least accurate of the 3 elements in equation (39) should
be computed from the other two more reliable elements. The trend being
driven by current technology and ongoing research is to compute orthometric
heights from ellipsoid heights and geoid heights.

In cases where the forepoint elevation is to be computed from the “up”
component of the local geodetic horizon coordinates, the curvature and re-
fraction correction can be used locally to approximate H, as:

H, H +AH = H +Au+(c+r) (42)

H, = H +Au+ 00675 B2 * A7)  Equation 5.7,
1,000,000  Davis, et al. (1981) (43)
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Stochastic Model:

The equations listed in this section represent an application of the laws of
variance/covariance propagation as described in Chapter 4 of Mikhail (1976) and
make extensive use of the following matrix formulation applied to equations of the
functional model:

Zyy = In I’ | (44)
where:
Lyy = Covariance matrix of computed resuit.
T = Covariance matrix of variables used in computation.
Jyx = Jacobian matrix of partial derivatives of the result with

respect to the variables.

In particular, the following symbols are in addition to those used for the functional
model listed previously:

oy’ 0y* 05° = Variances of geocentric coordinates for a point.
Oxy Oxz Oyz Covariances of geocentric coordinates for a point.
062 0,> 0, Variances of a point in the local reference frame.
Oen Oey O Covariances of a point in the local reference frame.

2 2 2
Oax Oay Ouz

Oaxay 9axaz Oavaz

2 2 2
aAe UAn aAu

UAeAn UAeAu aAnAu

® April, 1997 by Earl F. Burkholder

Variances of geocentric coordinate differences.
Covariances of geocentric coordinate differences.
Variances of coordinate differences in local frame.
Covariances of coordinate differences in local frame.
Variances of local horizontal distance and azimuth.

Covariance of local horizontal distance with azimuth.

Variance of zenith direction.
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The stochastic information for each point is stored as its geocentric covariance matrix.

A. The covariance matrix is symmetric 3 X 3. Six numbers

are required to store upper (or lower) triangular values. (ci Oyy Oxz
o . . .. 2
B. Units in the covariance matrix is meters squared. Oxy Oy Oy
: 2
C. Standard deviation is square root of diagonal elements. %2z %z 9z]

Functional model computations supported by the stochastic model include:
A. Geocentric coordinate differences from geocentric coordinates:

Matrix formulation of the functional model equations is:

leq
Yl
aX [t o 0100]|
AY| = |0 -1 0 010] /" (45)
szl o 0 -1001] "
Y2
Z2

The Jacobian matrix noted above is used with the general matrix
variance/covariance propagation formulation, equation (44) as:

2
%% Y%y %xg %%, %xy, %xz
2 (-1 0 0
Oxy, %r, Oyz Y5, %rny, Org 0 -1 0
- 2
10 0100 %%z %1z % | 92x, 97y, %zz, 0 0 -1
Z,=/0 -1 0 010]|" - 11 o o
0 0 -1001]|[%x % 92x] | %% %%y Oxz o 1 (46)
2
OXIYZ oyxyz oztyz osz., 0‘Y2 07221 0 0
%x2 Oz %2z oy, oy, o
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Assuming no correlation between points and omitting many computational
details, the result is:

) [ (2 2 ]
Oax Oaxay %ayaz (07‘1 ¥ o"z) (oxn”x * GXzYz) (oxxlx * axzzz)
2 2 2
Ly = [%axar %%r Oaraz (leYl * °X1Y¢) (°V1 ¥ o,,z) (Orz, * ol’zlz) @7
2 : 2 2
(Oaxaz %araz Oaz _(“x‘zl to z) (Oylzl + Gyzzz) (ozl + °z,) -
B. Local coordinate differences from geocentric coordinate differences:
The matrix formulation of the functional model equations is:
Ae -sin A cos A 0 ||AX
An| = |-sinpcosA -sin¢sini cosdp||AY (48)
Au cospcosi cospsind sing| |AZ

The Jacobian matrix noted above is used with the general error propagation
formulation to get the covariance matrix of local coordinate differences as:

[ 2 2
Ose %rcan %acau Osx Oaxay %axaz
_ 2 2 t
Z, = [%.an Oan Oanau J|0sxay Oar Oayazld 49)
2 2
Oacau Fanau  Tau 1Caxaz Cavaz Caz |
C. Geocentric coordinate differences from local coordinate differences:
The matrix formulation of the functional model equations is:
AX -sinA -sinpcosi cosdcosi||Ae
AY| = | cosA -singsini cosdpsini||An (50)
AZ 0 cos¢ sin¢ Au

The Jacobian matrix noted above is used with the general error
propagation formulation to get the covariance matrix of geocentric
coordinate differences as:

® April, 1997 by Earl F. Burkholder
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-
2
Osax Oaxar Caxaz Ose %scan %acau
Z, = ol = J |o s, o Jt
A Osxay 9ar Oayaz sean Tar  Opnae (51)
2 2
Oaxaz %avaz %az | [Oacau Oanau  Tau |
D. A rigorous transformation from one 3-dimensional rectangular

coordinate system to another is given by a seven-parameter
transformation. In matrix form, the functional model equation is:

X, = sRX, +K where (52)
X, = Vector of frame 2 coordinates
S = Scaler = 1.0
R = Rotation matrix, frame 1 to frame 2

Vector of frame | coordinates
Translation vector

X,
K

Applying covariance propagation to that system of equations gives:
rw = JEL T where (53)

vy Covariance matrix of frame 2 coordinates

L Covariance matrix of frame 1 coordinates

J = Partial derivative matrix of frame 2
coordinates with respect to frame 1.
(Rotation matrix, R, or R,, see below)

Therefore, the covariance matrix of a point position in the local
reference frame is obtained from the covariance matrix of the same
point in the geocentric reference frame as:

2 2

g, 0, O, Oy Oyy Oz

2 _ 2 — R 2 Rt

e~ [T On Opyf = Ry 104y Oy Op| Ky where (54)

2 2

O Onu Oy 0%z Oyz 0%

-sinA cosA 0
R, = |-sindcosd -sindsind cosd

cospcosd cosPsind sin¢
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And, the covariance matrix of a point position in the geocentric
reference frame is obtained from the covariance matrix of the same
point in the local reference frame as:

2 [ 2
Ox Oxy Oxz g, 0,, 9,
n _ 2 _ 2 ¢
xxz = |Oxy Oy Op| = Rylo, o, o, |R' where (55)
2 2
Oy Oy Oz | O O, O,

-sinA -sin¢cosA cosdcosi
R, = |cosA -singsinA cos¢sini

0 cos¢ sin¢

E. Inverse distance and azimuth from local coordinate differences:

The functional model equations for distance and azimuth are:

S = yAe?r + An? (56)

¢ = tan (Ai) 57)
An
The Jacobian matrix of partial derivatives is:
as a8 95§ Ade An 0
7 dAe 3 An 3 Au s S
|8e da da|  |An Ae | (58)
dAe 3 An J Au 52 §?

Using the covariance propagation formulation, the results are:

[ 2

2 Oac oAcAn erAu
Os Ogq
= - 2 t
2:II\W - 2 = J erAn Oan aAnAu J (59)
Gs, Oy )
_OAeAu Oanau  %au _J
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F. For a new point based upon a traverse computation during which the

geocentric coordinates of the point are determined, the functional model in
matrix form is:

11
Y
X, 100100 !
,, =010010 %
AX : (60)
z, 001001
AY
Az

The covariance matrix of the variables (which assumes no correlation between
the coordinates of Point 1 and the geocentric coordinate differences) is:

o, .
9% %xy, %xg 0 0 0
2
Oy, 01, Oy 0 O 0
o 5 o2 0 0 0
xz, vz, %z
Evan.abl” = L 1“1 “1 1 | i (61)
O 0 0 Oax Oaxar %axaz
2
0 0 O] founuy O%ar O%ayaz
0 0 0 2
L Oaxaz Tavaz Yaz | |
Applying covariance propagation, equation (44), the covariance matrix of a
newly established point is:
Zyvz, = 7 Zoariales Jt o= Zyrz, * Zaxaraz (62)

Note that the covariance matrix for Point 1 is either presumed known or zero.

The remaining portion of this section is addressed to obtaining the covariance
matrix of the geocentric coordinate differences. Two identifiable options are:

1.  Using GPS processing resuits, the variance/covariance values of the
geocentric coordinate differences for a base line are available and used.
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2.  The geocentric coordinate differences of the vector from Point 1 to
Point 2 is obtained by rotating local coordinate differences to geocentric
coordinate differences using equation (32). The covariance matrix of
the geocentric coordinate differences is obtained from the covariance
matrix of the local coordinate differences using equation (51).

The next question addressed is that of obtaining the covariance matrix of local
coordinate differences from conventional “total station" surveying
measurements. An underlying assumption' here (which is nearly true, but not
quite) is that the azimuth of each line is an independent quantity. The
functional model for local (mark to mark) coordinate differences is:

Ae S sinz sina

An| = |S sinz cosa

Au S cosz where (63)
S = Slope distance, standpoint to forepoint.

o = Azimuth, standpoint to forepoint.

z = Zenith direction, standpoint to forepoint.

(If reciprocal zenith directions are used, the "curvature”
portion of the correction should be removed.)

The Jacobian matrix is obtained as the matrix of partial derivatives with
respect to the observed quantities as:

[0Ae OdAe JdAe]
as 9z Jda .. ) .
sinzsina Scoszsina Ssinzcosa«

dAn dAn JdAn . o (64)
J = = |sinzcosa Scoszcosa -Ssinzsina

as dz Jda . 0

dAu dAu dAu cosz  -Ssinz

| 0§ Jz da |

The same assumption has been widely adopted whenever the Compass Rule is used to adjust a
traverse whose azimuths were determined with a transit or theodolite instead of a compass or
gyroscope. Although formulation of the equations gets tedious and more storage is required
for larger matrices, the stochastic model will competently handle correlation between points
and correlation from one course to another.
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The variance/covariance matrix of the observed quantities (variables) is a
diagonal matrix of variances due to independence of the measurements. This
assumption is related to, but not the same as the earlier assumption of
independence of azimuth from course to course. Using the Jacobian matrix
and the variance matrix of observations in equation (44), the covariance matrix
of local coordinate differences is:

[ 5 ~ ;
Oae  Oacan %acau Os 0 0
2 2 ¢ (65)
Zicansw = |%acan Oan Opumaul = J |0 o Of J
2 2
_GAeAu Oanau  Cau 0 0 0“.

Options for using the stochastic model are:
A. The stochastic model is not used for a point:

1. No standard deviation or covariance values are input.
2. The covariance matrix is set to zero.
3. The geocentric X/Y/Z position is used as being errorless.

B. The geocentric covariance matrix for a point is defined at the same time as
its X/Y/Z coordinates:

1. Input as standard deviations of X/Y/Z:

a. Units of meters input (stored as variance - meters squared)
b. No correlation data input. Off diagonal elements are zero.
c. Different components may have different values.

2. Full covariance matrix is input for each point:

a. Units of meters squared

b. Six elements input and stored

¢. Caution - care is required to assure input of covariance
values which are mathematically consistent. If inappropriate
values of covariance are input, negative variances (incorrect)
in another reference frame may be the result.

C. The geocentric covariance matrix for a point is computed from the local

covariance matrix which is determined at the same time the point is
defined. Input options for local covariance matrix are:

® April, 1997 by Earl F. Burkholder 23 Circleville, Ohio 43113



1. Input as standard deviations of e/n/u:

a. Units of meters input (stored as variance - meters squared)
b. No correlation data input. Off diagonal elements are zero.
c. Different components may have different values.

2. Full local covariance matrix is input for each point:

a. Units of meters squared

b. Six elements input and stored

¢. Caution - care is required to assure input of covariance
values which are mathematically consistent. If inappropriate
values of covariance are input, negative variances (incorrect)
in another reference frame may be the result.

3. The geocentric covariance matrix for the point defined is computed
using equation (55).

D. Point 2 is established by adding user supplied geocentric coordinate
differences to the geocentric coordinates of Point 1. The covariance
matrix of Point 2 is found using equation (62). Options for obtaining
the covariance matrix of the geocentric coordinate differences include:

1. No covariance data are available.
a. No covariance values are input.
b. Covariance matrix of geocentric coordinate differences is set

to zero.
c. The uncertainty of Point 2 is the same as at Point 1.

2. Input standard deviations of geocentric coordinate differences.
a. Units of meters input (stored as variance - meters squared)
b. No correlation data input. Off diagonal elements are zero.
c. Different components may have different values.

3. Full covariance matrix is input for geocentric coordinate
differences of the vector:

a. Units of meters squared

b. Six elements input and stored

c. Caution - care is required to assure input of covariance
values which are mathematically consistent. If inappropriate
values of covariance are input, negative variances (incorrect)
in another reference frame may be the resuit.
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E. Point 2 is established by adding geocentric coordinate differences, obtained
by rotating local coordinate differences to the geocentric reference frame,
to the geocentric coordinates of Point 1. In this case, equation (51) is
used before the covariance matrix of Point 2 can be found using equation
(62). Options for obtaining the covariance matrix of the local coordinate
differences include:

1. No covariance data are available.
a. No covariance values are input.
b. Covariance matrix of local coordinate differences is set
to zero.
c. The uncertainty of Point 2 is the same as at Point 1.

2. Input standard deviations of local coordinate differences.
a. Units of meters input (stored as variance - meters squared)
b. No correlation data input. Off diagonal elements are zero.
¢. Different components may have different values.

3. Full covariance matrix is input for geocentric coordinate
differences of the vector:

a. Units of meters squared

b. Six elements input and stored

¢. Caution - care is required to assure input of covariance
values which are mathematically consistent. If inappropriate
values of covariance are input, negative variances (incorrect)
in another reference frame may be the result.

4. Use equation (65) to obtain the covariance matrix of the local
coordinate differences based upon independent measurements of
slope distance, zenith directions, and azimuth.

a. Only standard deviations are input. Units are:
1. Meters for slope distance.
2. Radians for angular values. Programs can be written
to accept other units of input.
b. No correlation data input. Off diagonal elements are zero.
c. Each independent observation has its own standard deviation.
d. If vertical angles are used, two options are:
1. Change equations (63) and (64).
2. Compute zenith direction from vertical angle.
(Standard deviation is same for vertical or zenith.)
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APPENDIX B

3-D Example Using BURKORD™ at
Oregon’s Institute of Technology

Klamath Falls, Oregon
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COMPARISON OF COORDINATE SYSTEMS
GPS Points at Oregon Tech

Pub

Trimble

Median?2

Schematic
Diagram

Not to Scale

NOTES:

1. Station "Altamont” located off campus and .
part of Oregon High Precision Geodetic Network (HPGN).

2. Stations "Pub’, "Trimble”, "K-785" and "Median2"
are located on campus of Oregon Tech.

3. Campus network is also tied to California HPGN.
Connection is not shown.

4. Geocentric (3-D) coordinates are primary
data for all campus points.

Altamont

Title:  Control Points for Comparison of Local & 3-D Coordinate Systems

OREGON INSTITUTE OF TECHNOLOGY |Date: Nov. 1992 | File: OIT-GPS.OWG

Klamath Falls, Oregon 97601-8801 Orawn by: Earl F. Burkholder




Data Collected by:
Computed by:

Tabulated and

3-D COGO Example Data - GPS Based

Control Points (HPGN) at Oregon Institute of Technology

Printed by:

Station

Ear] F. Burkholder - October, 1996

Global COGO Inc.
Circleville, Ohio

Geocentric
Coordinates

K-785

Trimble

Median-2

Pub

A=
Y=

Z=

-2,490,977.048
-4,019,738.188
4,267,460.384

-2,490,854.501
~-4,019,681.242
4,267,591.406

W own

X
Y
Z

= =2,491,313.163
= -4,019,556.682
= 4,267,423.420

X= -2,490,534.863
-4,019,658.196

Geodetic
Coordinates

¢= 42 15 16.99294N
A=121 47 09.35422w
h= 1,297.866

¢= 42 15 22.59644N
A=121 47 06.11898W
h= 1,302.365

¢= 42 15 15.61009N
A=121 47 25.98592wW
h= 1,289.871

¢= 42 15 32.91354N
A=121 46 54.79688W

NGS and various vendors during on campus demonstrations

Earl F. Burkholder & OIT Geodesy Students - 1992 and 1993

Assumed Standard Deviations
Example 1

0.005
0.005
0.00S

0.005
0.005
0.10-

0.100
0.100
0.100

0.005
0.00s

N/s
E/W
up

N/s
E/W
UP

N/S
E/W
UP

N/s
E/W

Example 2

0.10 N/s
0.10 E/W
0.005 UP

0.10 N/s
0.10 E/W
0.005 UP

1.00 N/S
1.00 E/W
0.005 UP

1.00 N/s

1.00 E/W

4,267,850.838 h = 1,337.720 1.00 up

0.100 up

Notes: All linear units are meters.

Standard deviations have been assumed for all examples. Other
standard deviation combinations (or covariance information) can
be chosen by the user and used in a demonstration version of
BURKORD, a 3~D coordinate gecmetry software package.

Three separate printouts shows examples based on these data.
Example 1 shows precise vertical on 1 point, precise horizontal
on 3 of 4 points, one "weak" point, and one "strong” point.
Example 2 shows precise vertical on 3 of 4 points and approximate
horizontal on all points - one point very approximate, 1 meter.
Example 3 starts on K-785 as the "known" point and uses the
values shown below for 4 modes of traversing; 1) geocentric
coordinate differences, 2) local coordinate differences, 3) slope
distance, vertical angle, azimuth, and 4) slope distance, zenith
direction, azimuth.

K-785 to Trimble:
122.5471 +/- 0.006
56.9460 +/- 0.004
131.0224 +/- 0.005

e to Pub:
AE = 259,.5629 +/- 0.004
AN = 318.4064 +/- 0.006
AU = 35.3414 +/- 0.008

Median-2 to Pub-2:
SD = 893.7231 +/- 0.005
Zen. = 86° 56' 06" +/- 10"
Azi = 53° 14°' 38" +/- 5"

Ay
Az

K-785 to Median-2:

383.776 +/=
=1° 11' 44" +/-
263° 36' 56" +/-

SD
VA
Azi

0.005
io"
SH
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'BURKORD(TM)' COMPUTES 3-D COORDINATE GEOMETRY POSITIONS FOR SPATIAL
DATA UTILIZING GPS VECTORS, LOCAL COORDINATE OIFFERENCES AND

3-D SURVEYING MEASUREMENTS.

COPYRIGHT (C) 1996 AND
ALL RIGHTS RESERVED BY:

USE OF BURKORD(TM) LICENSED TO:
Purchaser's Name

GLOBAL CDGO, INC Company Name
P.0. BOX 13240 Address
CIRCLEVILLE, OHIO 43113 City/State/Zip

USER:  EARL F. BURKHOLDER

DATE:  JANUARY 12, 1997

PROGRAM : BURKORD(TM) - VERSION 8A, DECEMBER 1996 S/N 8AB96000

DATA FILE: EXMPL -8A.DAT

OUTPUT FILE:  TAPS-TST.OUT

CLIENT/AGENCY: TEST OF BURKORD(TM) VERSION 8A BY GLOBAL COGO, INC.
JOB/PROJECT:  HARN CONNECTED GPS POINTS AT OREGON INSTITUTE OF TECHNOLOGY

****t*t**l‘*ittt*ttt**t*tt*ttttt*ti'tt“Qtil‘*

A LISTING OF POINTS
101 -2490977.0480
102 -2490854.5010

IN ACTIVE PROJECT IS:
-4019738.1880 4267460.3840
-4019681.2620 4267591.4060

.000025 .000025 .000025
-001541 .003973 .004536

.000000 .000000 .000000 K-78S
.002447-.002615-.004220 TRIMBLE

103 -2491313.1630 -4019556.6820 4267423.4200 .010000 .010000 -010000 .000000 .000000 .000000 MEDIAN-2
104 -2490534.8630 -4019658.1960 4267850.8380 .001541 003973 .004536 .002446-.002615-.004220 PUB
AN EXPANDED LISTING OF POINTS 101 TO 104
101 K-785 X Y pa E N U
LAT (N+§-) 42 15 16.992928 X: -2490977.0480 X .25E-04 E .25E-04
LON (E+W-) -121 47 9.354217 Y: -4019738.1880 Y .00E+00 .25E-04 N .00E+00 .25E-04
EL HGT 1297.8660 M 2: 4267460.3840 Z .00E+00 .0OE+00 .25E-04 U .00E+00 .0CE+00 .25E-04
102 TRIMBLE X Y Z E N u
LAT (N+S-) 42 15 22.596449 X: -2490854.5010 X .15E-02 E .25E-04
LON (E+W-) -121 47 6.118987 Y: -4019681.2420 Y .24E-02 .40E-02 N .00E+00 .25€-04
EL HGT 1302.3653 M Z: 4267591.4060 Z -.26E-02 -.42E-02 .45E-02 U .00E+00 .00E+00 .10E-01
103 MEDIAN-2 X Y Z E N U
LAT (N+s-) 42 15 15.610080 X: -2491313.1630 X .10E-01 E .10E-01
LON (E+W-) -121 47 25.985930 Y: -4019556.6820 Y .00E+00 .10E-01 N .00E+Q0 .10E-01
EL HGT 1289.8706 M Z: 4267623.4200 Z .00E+00 .00E+00 .10E-01 U .00E+00 .00E+00 .10E-01
104 PUB X Y b2 E N u
LAT (N#S-) 42 15 32.913540 X: -2490534.8630 X .1S5E-02 E .25E-04
LON (E+W-) -121 46 54.796867 Y: -4019658.1960 Y .24E-02 .40€E-02 N .00E+00 .25E-04
EL HGT 1337.7200 M Z: 4267850.8380 Z -.26E-02 -.42E-02 .45E-02 U .00E+00 .0CE+00 .10E-01
LISTING OF POINTS WITH RESPECT TO MASTER P.0.B: 101 K-785
(ASSUMING POSITION OF P.0.B. IS ERRORLESS)
NUMBER EAST SIGMA NORTH SIGMA UP  SIGMA STATION
102 172.933 .005 74.172  .005 4.497 .100 TRIMBLE
103 -42.666 .100 -381.313 .100 -8.007 .100 MEDIAN-2
104 491.343 005 333.731  .005 39.826 .100 PUB
INVERSE BETWEEN POINTS
101 K-785 .
X = -2490977.0480 LAT (N+#S-) 42 15 16.992928 +/- .0050 METERS N
Y = -4019738.1880 LON (E+W-) -121 47 9.354217 +/- .0050 METERS E  STANDARD DEVIATIONS
Z = 4267460.3840 EL HGT 1297.8660 # +/- .0050 METERS u
DELTA X/Y/Z WITH SIGMAS 122.5470M +/- .040M 56.9460M +/- _063M 131.0220M +/- .068M
DELTA E/N/U WITH SIGMAS 7417154 +/- .007TM 172.93284 +/- .007M 4.4965M +/-  _100M
LOCAL PLANE INV: DIST = 188.1679M +/- .007TM N AZl. = 23 12 52.82 +/- 7.8 SEC
102 TRIMBLE
X = -2490854.5010 LAT (N+#S-) 42 15 22.596449 +/- .0050 METERS N
Y = -4019681.2420 LON (E+W-) -121 47 6.118987 +/- .0050 METERS E  STANDARD DEVIATIONS
Z = 4267591.4060 EL HGTY 1302.3653 +/- .1000 METERS u
DELTA X/Y/Z WITH SIGMAS  -122.5470M +/~ ,040M  +56,9460M +/- .0&3M =131.0220M +/- .068M
DELTA E/N/U WITH SIGMAS -74.17334 +/-  .00TM  -172.9319M +/- _.0O7M -4.5021M +/- . 100M
LOCAL PLANE INV: DIST = 188.1678M +/- .007M N AZI. = 203 12 55.00 +/- 7.8 SEC

101 K-785
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