Coordinates, Calculators, and Intersections

by Earl F. Burkholder

Abstract. Programmable calculators have become quite indispensable to anyone performing surveying
calculations. Trigonometric formulas used in plane coordinate computations are universally understood
and many have programmed them for various calculators; some efficiently and correctly, others not so.
This paper presents formulas and calculator procedures for coordinate geometry and intersection com-
putations which are superior in accuracy and efficiency to those appearing in recent surveying texts.
Greater accuracy is obtained by utilizing coordinate differences in the intersection formulas. Greater effi-
ciency is achieved through use of polar-rectangular conversions and by exploiting similarities found in the

solutions of various intersection problems.

Introduction

Programmable calculators have become an
indispenable tool for anyone performing sur-
veying calculations. Although tedium of look-
ing up trigonometric functions and recording
numerous intermediate values has been elim-
inated, performing computations efficiently
is still desirable. Additionally, the pro-
fessional surveyor is responsible for correct-
ness of the result and should know what a
“canned” program is doing with the data.
This paper presents formulas for coordinate
geometry computations which are superior in
accuracy and efficiency to many being used.
Greater accuracy is obtained by using coordi-
nate differences rather than the entire coor-
dinate value (i.e., state plane coordinates) in
the intersection formulas. Greater efficiency
is achieved through use of the “surveyor’s
reference system” in the polar-rectangular
conversions and by exploiting similarities
" found in various intersection problems.

Goal

The goal here is to present rigorous, efficient
calculator and programming procedures for
the following computations: , '
¢ Forward (Traverse)

* Inverse .

~® Line-line intersection (bearing-bearing)

* Line-circle intersection (bearing-distance)
¢ Circle-circle intersection (distance-distance)
¢ Perpendicular offset

It is possible to program each problem
the way it would be solved longhand. How-
ever, it is more efficient to use built-in fune-
tions for the Forward and Inverse and to
solve the intersections symbolically before
programming them.

Definitions and Conventions

Although redundant for most, definitions and
conventions to be followed are stated specifi-
cally. There must be no ambiguity in the
programmer’s mind or the user’s under-
standing as to the meaning or use of any ele-
ment in the solution of a problem. A com-
puter does only and exactly what it is told to
do.

Surveyor’s Reference System: A two-dimen-
sional plane cartesian coordinate system is
used for surveying computations and in-
cludes:

® A set of mutually perpendicular axes con-
sisting of:
a. The abscissa, a horizontal line along
which the X distance is measured and,

b. The ordinate, a vertical line along
which the Y distance is measured.
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* Labeling and use of map directions as
follows:
a. North, the positive Y axis direction.
b. East, the positive X axis direction,
c. South, the negative Y axis direction.
d. West, the negative Y axis direction.
® Use of North as the reference direction,
000°00'00". '
* A positive clockwise rotation measured in

degrees, minutes, and seconds from 0° to
360° (azimuths).

® Quadrant ' ibeling as:

a. Northeast, Quadrant I
b. Southeast, Quadrant II
c. Southwest, Quadrant III
d. Northwest, Quadrant IV

Math/Science Reference System: Practically
all calculators are built or “hardwired” con-
ventionally as follows:

* The trigonometric functions normally oper-
ate in decimal degrees. Radians or grads can
be specified.

* The polar/rectangular conversions are bas-
ed upon the math/science coordinate system.
It is the same as the surveyor reference sys-
tem except:

a. No map directions are used.

b. The reference direction is along the X
axis. '

c. Positive rotation is counterclockwise.
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d. Quadrants are labeled counterclock-
wise (Fig. 1).

Each reader is responsible to reconcile
the differences between the coordinate sys-
tem hardwired into the particular calculator
and that used for surveying computations.
The following should minimize confusion
caused by the differences.

® X and Y coordinates are the same in both
systems.

* Values of the trigonometric functions re-
main unchanged:

a. Quadrant I: sin + cos +
b. Quadrant II: sin + cos ~
c. Quadrant III: sin — cos —
d. Quadrant IV: sin - cos +

¢ If the direction is alpha (a) in the surveyor'’s
system and theta (6) in the math/science sys-
tem, they are related by:

2=90°-0and 6=90°_-gq

sing = cosO and cosa = sin®.

The polar/rectangular (P/R) conversion
in most calculators is hardwired to give:

D cos© = change in X (departure) and

D sin® = change in Y (latitude).
The same result (departure and latitude) is
obtained in the surveyor’s system by using:

D sina = change in X (departure) and

D cosa = change in Y (latitude).

Y
4 quadrant I
quadrant
Il |(X’Y)
AYi
® I X
DX o
quadrant quadrant
[11 Iv

MATH/SCIENCE SYSTEM

Figure 1. Comparison of coordinate systems.



Since the calculator does not know the dif-
ference between ¢ and 0, the only change re-
quired of the user is to switch the latitude
and departure designators associated with
polar/rectangular conversion. For example,
to go from polar to rectangular coordinates,
the calculator manual may say departure is
displayed as the product of distance times co-
sine of direction entered. If the direction
were entered as an azimuth in the surveyor’s
system, the same product is really the course
latitude rather than the departure. A similar
switch is made going from rectangular to pol-
ar. If one inputs the departure/latitude where
the manual asks for latitude/departure (math/
science system) the resulting azimuth will be
correct in the surveyor’s reference system.

The coordinate computation elements
used throughout this paper and shown in Fig-
ure 2 are:

X, & Y; =X and Y coordinates of beginning
point occupied.

X, & Y, =X and Y coordinates of ending
point.

X, & Y, =X and Y coordinates of intermedi-
ate point defined by the intersec-
tion of:

-a. two lines (line-line).
b. a line with a circle (line-circle).
c. two circles (circle-circle).

a, =Direction (azimuth) from point 1 to
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B =Direction from intersection point to
point 2.

D, =Distance from point 1 to point 2.

D, =Distance from point 1 to intersection
point,

D, =Distance from intersection point to
point 2.

X =X, ~ X, (departure of course 1 to 2).
AY =Y, - Y, (latitude of course 1 to 2).

Y =Angle formed at point 1 by D, and D,
(always +).

Assumptions and Approach

The following assumptions and philosophy
are critical to understanding derivation and
use of equations listed in the Summary of
Coordinate Computation Formulas later in
this paper.

® Coordinates of a point are considered pri-
mary data. If coordinates for a point are not
available, the direction and distance to it
from some known point are the defining data
for that point. However, once established, the
coordinates are primary data and all other
quantities are derived from the coordinates.

e Uncertainty, random errors, positional
tolerance and standard deviation are not con-
sidered. This paper deals only with consisten-
cy of geometrical elements of a problem and
redundancy is used only to check correctness

point 2. of a solution.
a = Generic direction from point 1 to any e Inasmuch as state plane coordinates have
point. large magnitudes it is desirable to use coor-
NORTH
Y
[
(0,0)

Figure 2. Elements of coordinate computation.
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dinate differences. Certain problems with sig-
nificant figures and calculator capacity are
avoided if a trigonometric function is multi-
plied by a coordinate difference rather than a
very large number.

* The approach for the intersection solutions
is to write the forward computation symbol-
ically, once for each course. The resulting
equations are solved for an unknown direc-
tion or distance as required to compute coor-
dinates of the intersection point from point 1
using the forward computation. An inverse
from there to point 2 will give a direction and
distance which can be compared with given
data on the same course. If the check fails, an
error was made and the computation must be
repeated.

® More steps than might be necessary are in-
cluded in an effort to make the derivation
easy to follow.

Basic Formulas

Forward computation formulas are very bas-
ic, but are the basis of intersection formula
derivation. Referring to Figure 2 and follow-
ing conventions previously adopted:

Xy =X;+Dgsina, = X; +AX (1)
Y, =Y, +Dycosa,=Y,; +AY (2)

When one uses the P/R (polar-rectangular)
key on a calculator, it computes AX and AY
using direction and distance provided by the
user. Note however, if the calculator is hard-
wired to the math/science system, it gives

AX =D, cos (direction) and AY =D, sin
(direction).

If data were input in the surveyor's system
(azimuth from north); the desired computa-
tion is still performed but result is given as:

AY =D, cos (azimuth) and AX = D, sin
(azimuth).

Thus, if one switches latitude/departure
designations, the P/R key can be very useful.
When programming, use of a summation key
makes the P/R even more powerful if the pro-
grammer and/or user is willing to keep track
of which registers are accumulated as lati-
tudes and which are accumulated as depar-
tures.

The inverse computations are also basic

formulas which are hardwired into most cal-
culators. Given coordinates of two points,
equations (1) and (2) are used as:

AX =D, sina, = X, - X, 3)
AY =D, cosa,=Y,- Y, 4)

The inverse computation uses equations (3)
and (4) to find direction and distance between
two points. The distance is obtained by squar-
ing and adding equations (3) and (4);

AXZ+ AY2= D2(sinZa_+ cosZa,)
= (X, - X2+ (Y, - Y2
D,= VAXz+AY2
= V (Xz — Xl)z + (Y2 - YI)Z' (5)

Dividing equation (3) by (4) will give azimuth
point 1 to point 2:

(AX/AY) = (D,sina,/D,sina,) = tana, (6)

The relationship given in equation (6) is al-
ways true, but will not yield a unique azimuth
(0° to 360°) due to the repetitive nature of the
tangent function. Another problem in a long-
hand solution is that computing an azimuth of
due east or west is undefined when AY is
zero. These problems are handled in the long-
hand solution by adding a very small value
(0.000001) to AY before dividing and by using
bearings for direction. However, a unique azi-
muth can be found efficiently if one is willing
to use the following tests.

® If AAY is negative, then
a,=180° + arctan(AX/AY)

¢ If test 1 fails and if AX is negative, then
a,=360° + arctan(AX/AY)

e If test 1 and test 2 botk fail, then
a, = arctan(AX/AY).

It is rarely necessary to use the preced-
ing test as most calculators have the R/P
(rectangular-polar) conversion built-in. Given
AX and AY the R/P key will provide a dis-
tance and a unique direction even if AY is
zero. If an azimuth in the surveyor’s system is
desired, one must be careful to input AX
where the calculator expects latitude and AY
for the departure. Otherwise, if hardwired in
the math/science system, the calculator will
give a counterclockwise azimuth from east. If
a negative azimuth is encountered, one can
execute the “mod” function found on some

s A SR i
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Figure 3. General case for intersection computation.

calculators or simply add 360° to put the azi-
muth in the proper range.

Intersections

So far, only two points have been considered.
Intersections involve three points, the begin-
ning and ending point plus the intermediate
intersection point. Figure 3 illustrates the
general intersection case written with the
forward computation formulas as:

X, =X,+D,sina T
Y, =Y,+D;cose 8
X, =X,+D,sinf 9)

Y, =Y, +D,cosf (10)

This system of four equations can be solved
for any combination of four unknowns. For in-
tersections, point 1 and point 2 are always
known and the coordinates of the intersection
are always unknown. Different intersection
problems are defined by various combina-
tions of unknowns as shown in Table 1. Un-
knowns (X, Y ) are eliminated from the set of
four equations by solving (9) for X, and equat-
ing to (7) and solving (10) for Y, and equating
to (8).

X, =X;+D;sina=X,~D,sinf  (11)
Y, =Y,+D;cosa=Y,-DycosB (12

Utilizing coordinate differences the equations
are written as:

AX =X,-X,=D;sina+D,sin8  (13)
AY =Y,-Y;=D,cosa+D,cosB (14)

The problem is now reduced to two equations
which can be solved to find that pair of un-
knowns required by the particular inter-
section.

Line-Line Intersection

Given: (X,,Y,), (X,,Y,), a and 8.
Find: (X,Y)), D, and D,.

The approach is to solve (14) for D,,
substitute into (13) and solve for D,. Knowing
D, and a coordinates (X,,Y,) are computed us-
ing forward position formula given by equa-
tions (7) and (8). Knowing coordinates of the
intersection point, distance D, can be com-
puted using the inverse computation. The in-
verse direction from the intersection point to
point 2 should agree identically (within signif-
icant digit capacity of calculator) with 8, the
given azimuth for course 2. If the inverse di-

Table 1. Ditferent intersection problems defined by various combinations of unknowns.

Known Always Unknown Unique Unknown Intersection
a&f X, &Y, D, & D, line-line
e&D, X,&Y, D, &B line-circle
D;&D, X,&Y, a&f circle-circle
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Figure 4. Example of negative distance in line-line intersection.

rection does not agree, an error was made in
the computations.
From equation (14),

D, = (AY - D; cos a)/cosf3

Substituting into equation (13) and solv-
ing for D,,

AX = D; sina + [(AY - D, cosa)/cosf] sin

D, sina = (AX cosfB- AY sinf + D, cosa sinf3)
[cosf3

D, (sinacosf3 - cosasinB) = AX cosf - AY sinB

D, = (AX cosf - AY sinf)/sinla - B) (15)

Equation (15) is an expression for D, in
terms of coordinate differences between
points 1 and 2 and the directions (azimuths) of
the two lines. The only restriction on the solu-
tion is that the two lines not be parallel. If
they are parallel, they will never intersect
and no solution can be found for D, due to
dividing by zero. Note that D, may be either

positive or negative. If D, is negative, as
shown in Figure 4, it means the intersection
occurs behind you in the sense of forward be-
ing in the direction q. In summary:

AX =X2—X1 &AY=Y2—Y1 (3)and(4)
D, =(AXcosB- AY sinf)/sinfla-B) (15)

X, =X;+D;sina M
Y, =Y;+D,cosa (8)
D, =V{X;-X)2+({Y,-Y)7 (5)
tan8 =(X,- X,)/(Y,~Y,) to check given
value 8. (6)

Line-Circle Intersection

Given: (XI'YI)' (Xz,Yz), a and Dz.
Find: (X,,Y,), D, and .

The approach in this case is to solve
equation (14) for cosB and to use a form of it in
equation (13) to solve for D;. As shown in Fig-
ure 5, two values of D, are expected. Thus it

NORTH
Y
4 (Xz.Yz) D,
5 (vaYp)
<o
30
3 4
(X4,Yq)
(0,0) EAST

Figure 5. Elements of line-circle intersection.




is no surprise that the solution involves a
quadratic equation. From equation (14),

cos 3 =(AY - D, cosa)/D,

cos?B = (AY2- 2AYD, cosa + DZcos?a}/D2? (16) _

Recall the trigonometric identity:
sinf =V1-cos?8 17

Now substitute equation (16) into (17), then in-
to (13) to get:

AX =D, sina
+D,V 1-(AY?- 2AY D cosa

and
(AX - D, sina)?=

DZ[1 - (AY?- 2AY D, cosa + D?cos%a)/D2]
from which
£X? - 2AX D, sina + D?sin’a - DZ

+AY2 - 2AY D, cosa + D?cos?a = 0.

Collect D? and D, terms in quadratic form,
a(D?) +b(D)+c=0

D2(sin®a + cos®a) + Dy(-2AX sina — 2AY cosa)
+AX%+ AY2-DZ=0 ' (18)

Equating coefficients in equation (18) with
those of the quadratic,

a=1, b=-2AX sina - 2AY cosa and

c=AX?%+ AY?- D2
o

~ /
PX

(X1.¥q)

N
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Substituting values into the quadratic equa-
tion solution gives:

D, =AX sina + AY cosa + V(b2/4) — ¢ (19)

The terms under the radical are:

(b%/4) - ¢ = (4AX2 sina + 8AX sina AY cosa
+4AY? cos?a)/4 - AX2 - AY2+ D2
= AXZXsinZ%a - 1) + AY?(cos%a — 1)
+ 24X sinaAY cosa + D2

Now recall that
sin20 — 1 = -¢0s20 and co0s20 — 1 = sin20.
Therefore,

(b2/4) — ¢ = -1{AX?2 cos?a — 2/X cosaA\Y sina
+ AY?sin?a) + D2

=DZ - (AX cosa — AY sina)? (20)
Combining equations (19) and (20) we get:

D, = AX sina + AY cosa
+V D2 - (AX cosa — AY sina)? ) 21)

Equation (21) is an expression for D, in terms
of coordinate differences from point 1 to point
2 and the direction of the line (a) from point 1
to the intersection point. Note that two
values of D; were obtained as expected.

In addition to efficiency enjoyed by using
equation (21), there is an unexpected bonus
obtained from an analysis of the value under
the radical. If the value under the radical is
negative, the line does not intersect the circle
and no intersection can be computed. If the

Case 1 Case 11 Case I11
Two Positive Values Two Negative Values One Positive Value
of D4 of Dy and One Negative

Value of Dy

Figure 6. Example of positive and negative values of D, in line-circle intersection.
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value under the radical is exactly 0, there is
only one solution—the tangent case. All posi-
tive values under the radical yield two possi-
ble values of D,, one for each intersection.
Note in Figure 6 that values of D, which are
negative are just as legitimate as positive
values. The formula for D, is very powerful in
that it tells if there is no solution, one solu-
tion, or two solutions. Additionally, the val-
ues of D, can be examined to see if one or
both of the intersections are “behind” us.
There are no restrictions other than making
sure the line intersects the circle and being
careful if the exact tangent solution is desir-
ed. In that case the perpendicular offset for-
mula will give a specific value of D, given two
points and the direction of the line. In sum-
mary:

AX =X,-X,&AY=Y,-Y, (3)and (4)
D, =AXsina+AY cosa
+ VD2 - (AX cosa - AY sina)2’  (21)
X, =X;+D;sina Y]
Y, =Y,+D,cosa 8)
tanf = (X, - X )(Y,-Y,) (6)
D, =V(X;-X2+(Y,- Y2 used to
check computation. (5)

Circle-Circle Intersection

Given: (Xl!Yl)’ (Xg,Yg), Dl & D2
Find: (X,Y,). ¢ &f

The simple elegance of the line-line and
line-circle intersection solutions justified the
laborious algebra required to obtain them.
That is not so with the circle-circle intersec-

tion. If we were to start with equations (13)
and (14), eliminate 8 as we did to get equation
(18) and try to solve it for a, the derivation
gets very messy. However, our goal can be
met by using the “longhand” approach and
programming the result. The solution is di-
rect, simple, rigorous, and efficient.

Refer to Figure 7 showing two intersect-
ing circles; one with its center at point 1, the
other at point 2. The approach will be to in-
verse from point 1 to point 2 to obtain the di-
rection (a,) and distance (D,). The angle ¢y) at
point 1 is computed using three side lengths
in the law of cosines. The azimuth to the in-
tersection points is obtained by adding angle
1) to or subtracting it from the inverse direc-
tion (a,). Coordinates of each intersection are
then computed using the forward computa-
tion. An inverse from the intersection point
to point 2 will give the direction (8) and dis-
tance (D,) which can be used as a check. In
summary:

a, =inverse direction from point 1

to point 2. (5)
D, =inverse distance from point 1

to point 2. (6)
(:057 = (D12 + Do2 - D22)/(2 DlDo) (22)
a  =a,+7Y (two solutions) (23)
X, =X,;+D;sina M
Y, =Y;+D,cosa (8
tanf = (X, ~ X (Y,-Y)) 6)
D, =V(X;-X,)2+(Y;-Y,)? used to

check computation. (5)

Consider possible alternatives. If the

NORTH (X Yo)
Y 2°'2
'\
(XD,Y
vYD)
> X
(0,0) EAST

Figure 7. Elements of circle-circle intersection.
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(Xy,Yq) Oy

(a) Above: Dy greater than

Do +02
Dy greater than Dy + D,

Figure 8. Failure of circles to intersect.

two circles do not intersect as shown in Fig-
ure 8a or 8b, |cos Y | will be greater than 1.0
for which (Y) does not exist. If the two circles
are tangent at exactly one point, cos?Y will be
either —1.0 or 1.0 and (¥) will be exactly 0°
or 180°. Otherwise, two solutions exist. The
angle (7) is added to or subtracted from the
inverse direction (a,) to give an azimuth to be
used with D, and the forward computation
formula. The inverse is then used to give ()
and to check the given distance D,.

In some cases it is desired to know only
the perpendicular distance from a line to a
given point. A line-line intersection with
B=a+90° will give the complete solution,
but if coordinates of the intersection are not
needed and distance D, (as shown in Figure 9)
is the only item of interest, a simple equation
can be used.

The approach is to solve equations (13)
and (14) for D, using 8= a + 90°. Recall trigo-
nometric identities.

Perpendicular Offset sin(@ + 90°) = cos® & cos(O + 90°) = -sinO
Given: (X,,Y,), (X;,Y,) and a Therefore, equations (13) and (14) can be writ-
Find: D, ten as:
NORTH
Y
/
(X9.,Yy)
= X
(0,0) EAST

Figure 9. Elements of perpendicular offset.



“EFB 10/5/9/
FAILURE OF C/RELES 70 TNTERSECT

D,a + D: - Df‘

a D, Do

L. SEPARATED ~RomM ONE A NOTHER:

Cos¥ =

IF D,+D, (s LESS THAN Do
THE c/RCLES it Mor INTERSECT.

THE LimIT OCcurs WHEN

D, +0; = Do £XAcTLlY OR
For TANGENT (L/M:Twc) CAsE

D,=D,-D 3
COST-: Dylnl—Dol_ (D°z~lD°D, +D'1/)\ i B ’ F
2D,De Dy = pd -20.L,+D%

2D, De = j.o000
Q D. DQ

I, WHEN ONE CIRCLE IS SNTIRELY WITHIN THE OTHER :

IF D, IS GREATER THAN D, +Po
THE CIRCLES WiLl pNoT INTERSECT.

THE LimiT OcecurS (WHEN
D, +Do =Dy &ExAcrry, OR

p) 2
D, = D,"+aD,Ds~+ Da'

FOR TANGENT (Limimua) CASS:/

2 2 -
cosI = D/ +Db, - (U.z‘/'lD,Do +D°’“) _____2_?_'.))_" = -/, 000>
D
2D,Dq 2D Do
GrAPH _oF Cosins Curvs THE ARC CoSInE Funcrion o= A CALC4LArOR
.o _.1.\ / WoRKS 1IN THIS RANGE 0°—/80°,
- \ C THE ANnGLE X~
wice ALwAys Bs
: _ ! PosiTiv& Aup LESs
> ¥ THAN OR EQuAL to
-0 + /80"

c° 90° 1 80° 70’ 360°



38 SURVEYING AND MAPPING, March 1986

AX =D, sina + D, sinla + 90°) = D, sing

+ D, cosa (24)
AY =D, cosa + D, cosla + 90°) = D, cosa
- D, sina (25)

Solve equation (25) for D, and substitute into
equation (24) to solve for D,.

D, =(AY + Dysina)/cosa
DX = [(AY + Dysina)/cosa] + D, cosa

AX cosa =AY sina + Dy(sin2a + cos2a)
D, =AX cosa - AY sina (26)

Equation (26) for a perpendicular offset
distance is elegant, rigorous, and simple. Not
only does it give the offset distance, but
which side of the line it is on is given by
whether it comes out positive or negative. If
point 2 lies right of the line as assumed in the
derivation, D, comes out positive. However,
if the point lies left of the line, D, comes out
negative. This feature can be particularly
useful when computing offset from a random
traverse line to a section line for clearing and
marking.

One final item about the perpendicular
offset. Note that the perpendicular offset
distance given by equation (26) also appears
under the radical of equation (21) as one of the
legs of a right triangle within the circle. Thus,
equation (26) might be programmed as a sub-
routine to be called as required.

Since programmable calculators have be-
come available the author has encountered
several inadequate intersection programs
which are or have been available on a com-
mercial basis. In one specific case, the pro-
gram failed entirely because the programmer

NORTH
Y
[

did not consider restrictions imposed by his
assumptions. In other cases, the accuracy of
the solution suffers because a large state
plane coordinate value is multiplied by a
trigonometric function rather than a coor-
dinate difference as presented herein.

Who is responsible for integrity of sur-
veying computations? Is it the technician
pushing the buttons as directed by the boss?
Is it the person who signs off on the computa-
tions or plat? Is it the person who writes
and/or markets the programs? Or is it those
who teach? Assuming all share that responsi-
bility, it is hoped this systematic approach to
coordinate computation and use of program-
mable calculators will improve our collective
professional efforts.

Summary of Coordinate Computation
Formulas

Forward:
(1) X2 = Xl + DO Sinao
(2) Y, =Y, + Dgcosa,

Inverse: (Figure 10)
B =X,-X,;

@AY =Y,-Y,

6)D, =VAXz+AY?

(6) tana, = (AX/AY)
a, =arctan (AX/AY), Quadrant I

a, =180° + arctan (AX/AY),
Quadrants IT & III

a,=360° + arctan (AX/AY), Quadrant
v

(0,0)

Figure 10. Elements of coordinate computation.
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Intersections: 23)a =a,+Y
(15) Line-Line (MX, =X;+D;sina
D; = (AX cosf - AY sinf)/sinla —f3) @Y, =Y,+D,cosa

B =azimuth from inverse (check line-

(21) Line-Circle :
D, - AX si v line intersection)
e sina + AY cosa D, = inverse distance (check line-circle
+ VDZ- (AX cosa - AY sina)? & circle-circle)
(22) Circle-Cirele | Perpendicular Offset:

cosY = (D2 + D2~ D,2)/(2D,D,) (26) D, =AX cosa - AY sina L]



