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ABSTRACT. State plane coordinate systems were designed to permit surveyors, engineers, and others to work
with plane rectangular coordinates while enjoying the benefits of using the precisely surveyed National Geodetic
Reference System (NGRS). The state plane systems are functional and useful, but lack complete acceptance
because (1) benefits do not justify the extra data collection and computational effort, (2) people avoid using
what they do not understand, and (3) grid distances differ from the horizontal ground distance. These obstacles
are surmountable through education and specifications, but, with personal computer resources universally
available, another solution has become increasingly attractive. By designing and implementing a local (county)
coordinate system, benefits of using the NGRS and existing state plane coordinates can be retained, grid and
ground distance differences are virtually eliminated, and users can continue to work with convenient rectangular
coordinates. This paper is written to support ideas proposed by Nancy von Meyer in an article on county
coordinate systems published in the June 1990 ACSM Bulletin, and concludes by presenting algorithms that

can be used to implement a local coordinate system.

Introduction

wo-dimensional rectangular coordinate sys-
I tems are widely used in surveying, engineer-
ing, and land information systems/geographic
information systems (LIS/GIS) applications. If used,
the third dimension is “up” or elevation. This prac-
tice is acceptable to the extent that a flat earth can be
assumed without sacrificing geometrical integrity. The
National Geodetic Reference System (NGRS), estab-
lished and supported by the National Geodetic Sur-
vey (NGS), provides very precise latitude and
longitude coordinates for thousands of control points
scattered throughout the United States. The problem
is that latitude/longitude positions have angular co-
ordinates of degrees, minutes, and seconds. Most users
find it more convenient to use two-dimensional plane
coordinates, such as northings and eastings. A map
projection “flattens” the earth, and permits use of
latitude/longitude control points in a two-dimen-
sional rectangular coordinate system. The geometri-
cal integrity of the precisely surveyed NGRS is
transferred to the two-dimensional system by using
a properly designed and documented map projec-
tion. The state plane coordinate systems designed in
the 1930s enable users of the NGRS to work with two-
dimensional coordinates anywhere within a state or
zone.
Drawbacks to using state plane coordinate control
have included:

1. Lack of accessibility: Control stations were es-
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tablished at locations selected for intervisibility
between points and strength of triangulation
figures. Hence, many existing points are located
on mountain tops and other hard-to-reach places.

2. Lack of proximity: Due to triangulation tech-
niques used to establish many of the existing
first- and second-order points, the points are often
6 to 15 miles or more apart, and not necessarily
located in urban high-use areas.

3. Lack of quality: Many subsequent points tied to
the existing first- and second-order network were
established using third-order or undocumented
procedures, and do not fulfill today’s need for
reliable control.

4. Lack of understanding: Many surveyors and en-
gineers have not been required to use state plane
coordinates and have not made the effort nec-
essary to understand their use.

5. Distortion: Horizontal ground distance may dif-
fer significantly from the grid distance shown
on a survey map or plat. This drawback is par-
ticularly important in route-location surveys,
construction layout, and accurate area
computations.

The first three drawbacks have been reduced dra-
matically with introduction of Global Positioning Sys-
tem (GPS) and total station surveying techniques. GPS
is routinely used to establish high-order control sta-
tions at readily accessible locations throughout an ur-
ban area or for specific projects. With modern total
stations, data collectors, and computers, it is easy and
economical to determine precise coordinates for trav-
erses tied to GPS control points. Tremendous prog-
ress also is being made in the level of understanding
as more mapping professionals and technicians learn
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to use state plane coordinates. The last drawback, the
difference between ground distance and grid dis-
tance, still is a problem and is the focus of this paper.

Definition of Terms

In an effort to be consistent with terminology used
by NGS for state plane coordinates on the North
American Datum of 1927 (NAD 27) and North Amer-
ican Datum of 1983 (NAD 83), the following defini-
tions are used:

NAD 27 (ACSM/American Society of Civil Engineers
[ASCE] 1978)

® Scale factor is grid distance divided by ellipsoid
distance.

® Sea-level factor is sea-level distance divided by
horizontal ground distance. It is identical to R/
(R+H).

® Grid factor is the product of scale factor and sea-
level factor. Grid distance = ground distance X
grid factor.

NAD 83 (Stem 1989)

® Grid-scale factor is grid distance divided by ellip-
soid distance.

® Elevation factor is ellipsoid distance divided by
horizontal ground distance, and determined by
R/AR+H+N).

® Combined factor is the product of grid-scale factor
and elevation factor. Grid distance = ground
distance X combined factor.

These changes were made in an attempt to be more
specific with respect to using the ellipsoid, versus sea
level, as an intermediate surface, and to avoid con-
fusion with the generic use of “scale factor” as ap-
plied to mapping. For example, the 7.5-minute U.S.
Geological Survey topographic map series has a scale
factor of 1:24,000 (map scale, 1 in. = 2,000 ft.).

The Distance Distortion Tradeoff

Grid/Ground Distance

When using state plane coordinates, there is a dif-
ference between a horizontal ground distance at some
elevation and the state plane coordinate inverse be-
tween the same two points. One is “ground dis-
tance,” the other is “grid distance.” As shown in
Figure 1, the magnitude of the difference varies with
elevation and location within a given zone. A 100.000-
m horizontal distance at a ground elevation of 500 m
near the center of a state plane zone having a mini-
mum scale factor of 0.9999 gives a grid distance of
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Figure 1. Relation of local grid to state plane grid.

99.982 m, a relative difference of 1:5,600. The relative
difference drops to 1:3,900 at 1,000-m elevation and
degenerates further for higher elevations.

This paper proposes designing a local projection to
reduce the distance distortion between ground and
grid without sacrificing the geometrical integrity of
existing state plane coordinate systems and uses. The
price of less distortion is being restricted to covering
a smaller (local) area with a given projection.

Map Projections

A fundamental tenet of map projections is that a curved
surface cannot be mapped to a plane without dis-
torting angles, distances, or area. By choosing an ap-
propriate map projection, it is possible to preserve
one of the three. An equal-area projection preserves
area, an equidistant projection preserves distance, and
conformal projections used for the state plane sys-
tems preserve shape so that angles between lines on
the curved surface are transformed without distortion
to the map surface.

Distance distortions on a state plane system are
minimized to the extent possible by limiting the width
of the state plane coordinate zones to 158 miles. In
being transformed to the state plane mapping sur-
face, a distance on the ellipsoid near the center of the
zone is compressed, and a distance near the edge of
the zone is stretched. The amount of distortion is
expressed numerically by the grid-scale factor for the
line.

Distortion Components

A distance distortion of 1:10,000 corresponds to a grid-
scale factor of 0.9999 or 1.0001. That means an ellips-
oid (sea-level) distance of 100.000 m near the center
of a zone is represented on the map as 99.990 m and
the same 100.000 m distance near the edge of the
zone shows up on the map as 100.010 m. At some
point between the center and edge of the zone, the
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grid surface intersects the ellipsoid. In that area, the
grid-scale factor is unity and a 100.000 m distance on
the ellipsoid shows up as 100.000 m on the map.

Some mistakenly believe that state plane coordi-
nates are good only to 1:10,000. It is true that a sea-
level distance near the zone center or extreme edges
may be distorted by 1:10,000, but if proper corrections
are applied to precise field measurements, the geo-
metrical integrity of state plane coordinates can be
just as good as the latitude/longitude control points
on which they are based.

Proper corrections include the elevation factor in
addition to the grid-scale factor described above. Sur-
veyors, engineers, and LIS/GIS professionals are con-
cerned with the total distortion between ground
distance and grid distance, not just with the grid-
scale factor portion. The total distance distortion is
given by the combined factor, which includes both
the elevation and grid-scale factors.

Design Considerations

Transit/tape surveys were acceptable, normal practice
in the 1930s, when the state plane coordinate systems
were designed. Traverse accuracies of 1:5,000 were
fairly routine, and a systematic distance distortion as
large as 1:10,000 could be absorbed without detri-
mental impact on the quality of a survey. If greater
computational accuracy were required, the grid-scale
factor could be computed and applied as described
above. Otherwise, a sea-level distance could be used
as the grid distance.

The original state plane coordinate systems were
designed to accommodate a scale factor up to 1:10,000,
but did not include elevation as a design criterion.
Michigan is an exception. Originally, the Coast and
Geodetic Survey selected three transverse Mercator
projections for Michigan but, when the state passed
the Michigan Coordinate System law for the NAD 27
in 1964, the legislature adopted three Lambert pro-
jections designed by Ralph Moore Berry, then pro-
fessor of geodetic engineering at the University of
Michigan. Since most of the land surface in Michigan
is within 200 ft. of 800 ft. above sea level, he designed
NAD 27 projections at a reference surface 800 ft. above
sea level. (At 200 ft. above datum, the elevation factor
is 0.9999904 and the distortion is 1:100,000.) There-
fore, except for areas exceeding 1,000 ft. in elevation,
the elevation factor in Michigan is insignificant for
NAD 27 coordinates, and the ground/grid distance
difference does not exceed 1:10,000.

Modern Practice

With the introduction of electronic distance measur-
ing instruments, the ratio of precision for many trav-
erses improved dramatically. No longer could the grid/

Surveying and Land Information Systems

ground distance difference be ignored without de-
grading the quality of a survey (even in Michigan).
As a result, routine practice is to compute and apply
both the elevation and grid-scale factors when com-
puting a survey. Geometrical integrity is preserved
and the 1:10,000 grid-scale factor limitation is moot.
Recognizing this, several states (Stem 1989) chose to
eliminate separate NAD 27 zones in favor of a single
NAD 83 zone covering the entire state. No integrity
is lost, but in those states the grid/ground distance
difference on NAD 83 is larger (depending on loca-
tion within a zone) than it was on NAD 27.

Elevated Reference Surface

The difference between grid and ground distance can
be minimized by using a map projection defined on
an elevated reference surface for a local area. If the
defining parameters are documented and incorpo-
rated into appropriate software, local users can work
with grid/ground distances that differ by some insig-
nificant amount, and the local coordinates can be
converted into state plane (or geodetic) coordinates
with established algorithms. Geometrical integrity and
direct connection to state plane coordinates can be
preserved.

The benefits and problems of working on an ele-
vated reference surface (i.e., the Michigan Coordi-
nate System) were investigated by the author
(Burkholder 1980b) and documented in a master’s
thesis at Purdue University. It was concluded (per-
haps incorrectly) that advantages of using a standard
system were greater than the benefits of using a state-
wide elevated reference surface. The Michigan Co-
ordinate System for NAD 83 uses standard Lambert
conic projections on the GRS 1980 ellipsoid.

The Third-Wave Difference

Berry’s foresight in proposing an elevated reference
surface is validated by recent developments. The per-
sonal computer now provides any user the ability to
use local coordinates within the framework of the
NGRS. Toffler (1980) describes a society in which de-
centralization and individualism are enhanced by the
information and computer revolution. In the past,
choices were more limited. Henry Ford is often quoted
as offering his customers any color car they wanted
as long as it was black. Now there are many options
available, and it is possible to buy a one-of-a-kind car
built to order. And, today’s consumer is encouraged
to develop and express individual taste in many areas,
including fashion, food, telephones, and computers.

The same concept applies to professional services.
Cars express our individuality, but they are all built
to certain safety standards, and almost all use un-
leaded gas. Telephone jacks have been standardized,
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but the consumer has a multitude of choices when
selecting a telephone. The NGRS and established state
plane coordinate systems are standards that support
multiple uses and data interchange. But, with GPS
tools, total stations, electronic data collectors, com-
puters, and knowledgeable planning, it is possible for
surveyors, engineers, and other mapping profession-
als to work in a local two-dimensional coordinate sys-
tem in which ground and grid distance are essentially
the same. And, if designed and implemented prop-
erly, the local coordinates can be fully compatible with
the state plane systems and the NGRS.

Two conditions are required for successful
implementation: ‘

1. Knowledgeable planning is essential to identify
and document appropriate design criteria. The
county’s physical configuration (length, breadth,
and elevation differences) and distortion toler-
ances must be considered. Planning also in-
cludes formalizing the administrative structure
responsible for implementing the local coordi-
nate system, company policy manual, county
ordinance, contract specifications, administra-
tive rules, and state statutes.

2. Fully compatible means that anyone wishing to
transform the local coordinates to state plane or
geodetic coordinates will have convenient ac-
cess to the design parameters, transformation
algorithms and software that will perform the
transformations without loss of geometrical

integrity.

The Solution

A local coordinate system can be defined in several
ways. Perhaps the most common way is to assign
arbitrary coordinates to a point, and assume a refer-
ence bearing. That may fulfill the need of the plane
surveyor for individual projects, but such a coordi-
nate system usually lacks permanent definition and
compatibility with other surveys in the region or area.
By contrast, the state plane systems provide specific-
ity and compatibility, but they often include more
distance distortion (from both grid-scale factor and
elevation) than is convenient or acceptable. A coun-
tywide coordinate system, as proposed by von Meyer
(1990), can be used to bridge the gap by incorporating
features of both.

Elevated Reference Surface

The conventional solution to unacceptable mapping
distortion is to restrict the area covered by the pro-
jection and to use an elevated reference surface. The
area covered is related to the grid-scale factor, while
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elevation is related to the sea-level factor. If both fac-
tors are controlled within specified limits, the grid/
ground difference can be as small as desired. Table 1
shows the distance permitted on a tangent projection
surface (be it plane, cone, or cylinder) from the point
or line of contact to the zone edge, where the grid-
scale factor limit is exceeded.

Greater area coverage for a given level of distortion
can be achieved by using a secant projection. Table
2 shows the distance permitted on a secant projection
surface from the middle of the zone to the edge, where
the maximum grid-scale factor is exceeded. The min-
imum grid-scale factor occurs at the zone center.

Information in these tables can be used to design
a map projection to a controlled level of distortion.
The minimum grid-scale factor is a defining param-
eter on a transverse Mercator projection, while the
spacing of the standard parallels is required for a
Lambert conic projection. In either case, the total zone
width is twice the distance from the zone center.

In addition to choosing the level of distortion per-
mitted by the map projection, the designer of a local
coordinate system must choose some reference ele-
vation to which all horizontal distances are trans-
formed (Burkholder 1991). Table 3 shows how nearly
the elevated reference surface must match ground
elevation before exceeding comparable distortion lev-
els. Geometrical integrity can still be preserved (by
applying corrections), but grid/ground differences will
become excessive if the elevation limit is exceeded
and corrections are not applied.

Steps for Designing a Local Coordinate System. The
following steps can be used to define a local coordi-
nate system having the geometrical integrity neces-
sary to preserve data-sharing options with the NGRS:

1. Choose maximum grid-scale factor distortion
permitted.

2. Choose projection type and locate it with design
parameters as follows:
Lambert Conic Conformal
® North and south standard parallels
® Longitude of central meridian
® Latitude of false origin

Table 1. Distances and distortions for tangent projections.

Maximum grid Maximum Approximate distance

scale factor  distortion from point/line
of contact
1.0001 1:10,000 90 km
1.00001 1:100,000 28 km
1.000002 1:500,000 13 km
1.000001 1:1,000,000 9 km
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Table 2. Distances and distortions for secant projections.

Minimum grid Maximum Approximate separation Maximum
scale factor distance of standard parallels distance from
at zone center distortion (Lambert) zone center
0.9999 1:10,000 1° 37 127 km
0.99999 1:100,000 0° 31 40 km
0.999998 1:500,000 0° 14 18 km
0.999999 1:1,000,000 0° 10’ 13 km

Table 3. Elevation factors and distortion levels.

Elevation Elevation must Distortion if
factor be known within  elevation ignored
0.9999 637 m 1:10,000
0.99999 64 m 1:100,000
0.999998 13 m 1:500,000
0.999999 6.4m 1:1,000,000

e False easting/northing, meters

Transverse Mercator

e Minimum grid-scale factor

® Longitude of central meridian

o Latitude of false origin

® False easting/northing, meters

3. Choose projection surface height and define el-
lipsoid parameters. Start with GRS 1980 ellips-
oid and modify.

a. The ellipsoid semimajor axis equals
6,378,137.000 m plus chosen reference el-
lipsoid height, meters.

b. Ellipsoid flattening or eccentricity is un-
changed. For GRS 1980 1/f = 298.25722210088
and e? = 0.0066943800229034.

4. Compute projection constants (either Lambert
or transverse Mercator) according to algorithm
listed in Appendix A. Note that constants for
any local coordinate system need be computed
only once, as shown in the examples in Appen-
dix A.

Steps for Using a Local Coordinate System. After
zone constants have been computed, local coordi-
nates for points having known latitude/longitude po-
sitions are computed using the transformation
algorithms in Appendix A.

1. Use the “forward” transformation to compute
local coordinates for known control points.

2. Each survey needs a place to start and a direc-
tion in which to go. Local coordinates on a known
control point provide a place to start, and a ref-
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erence azimuth is obtained from a coordinate
inverse to another visible local control point.

3. Horizontal ground distances can be used as grid
distances within tolerance of projection design.
For maximum integrity, all horizontal distances
in the local coordinate system area should be
reduced to a common datum plane (Burkholder
1991).

4. When working with local coordinates, one should
use local grid azimuth. The true mean bearing
of any line can be obtained by applying local
convergence computed at the midpoint of the
line. If any line is so long (more than 5 km, for
example) that the second term correction is
needed, such correction can be applied as de-
scribed by Stem (1989), pages 18-19 and 51-53.

5. Azimuths obtained from GPS measurements
using equations 7.4 or 7.11 of Leick (1990) are
geodetic azimuths and can be compared with
local grid azimuths, if convergence at the point
is used to convert the geodetic azimuth to local
grid azimuth.

6. Surveys based on a local projection can be com-
puted using plane Euclidean geometry, without
grid-scale factor corrections to the state plane
grid. After a local survey is completed, the local
coordinates can be transformed to latitude and
longitude using the local zone constants and the
“inverse” algorithms listed in Appendix A.

7. Once latitude/longitude are known for any point,
state plane coordinates can be computed using
standard procedures (Stem 1989).

8. Given a project goes beyond the limits of a local
coordinate system, another zone can and should
be defined. A transition from one zone to an-
other is handled by converting from one local
coordinate system to latitude and longitude, then
converting those values to local coordinates in
the adjoining system. It is identical to moving
from one state plane zone to another.

Conclusion

Using a properly designed local coordinate system,
it is possible to enjoy the benefits of state plane co-
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ordinates while conducting local plane surveys using
plane Euclidean geometry and coordinate geometry
routines. Furthermore, there is no need to make sea-
level or grid-scale factor corrections to the horizontal
distances, because the local grid distance is very nearly
identical to the horizontal ground distance. The max-
imum amount of distortion is determined by the de-
signer of the local system.

The key to using a local coordinate system suc-
cessfully is documenting the local zone parameters
and being very specific about the elevated reference
surface.
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Appendix A: Algorithms for Local Coordinate System
Using Elevated Reference Surface

Except where noted otherwise, symbols are intended to be consistent with those used in NOAA Manual
NOS NGS 5, State Plane Coordinate System of 1983 (Manual 5).

Lambert Conic Conformal Projection
Input reference ellipsoid (GRS 1980 recommended):
a = semi-major axis
1/f = reciprocal flattening

= 6,378,137.000 m
= 298.2572221008827

Input local coordinate system reference ellipsoid height:
h,.¢ = reference ellipsoid height in meters (not in Manual 5)
Compute semimajor axis of modified ellipsoid:

¢ = 6,378,137.000 + h, (used in place of “a” in Manual 5)
1/f = 298.2572221008827 (same as for standard ellipsoid, GRS 1980)

Compute ellipsoid constants:

e =2~ fP&e =Vl

c, = e¥2 + 5e%24 + e%12 + 13e%/360 + 3e!%160

¢y = 7e%48 + 29e5/240 + 811e8/11520 + 81e19/2240

Ce = 7e%120 + 81e%/1120 + 3029e19/53760 Used once below.
cg = 4279e%161280 + 883e!9/20160

C1o= 2087¢'%/161280

Fo = 2(C2 - 2C4 + 3C6 - 4C8 + 5C10

Used in “Inverse” to

F, = 8(cy —4dcs + 10cg — 20cy) compute geodetic latitude

£4 : ?géc(z —__6;2 -; 21c10) without iterating. See
°_ ® 10 also page 42 in Manual 5.
Fg = 512¢y
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Input defining parameters for Lambert projection (user’s choice):

¢, = latitude of north standard parallel

¢, = latitude of south standard parallel

¢, = latitude of false origin (usually where northing = 0.0)
Ao = west longitude of central meridian

E, = false easting on central meridian, meters

N, = northing at false origin, usually 0.0 m

Compute local (elevated) coordinate system projection constants:
(In = natural logarithm and exp(x) = € where ¢ = 2.718. . .)

1 + sind,
Qn = 0.5 Ing— sind,, € lnl — e sind, |
+ sind, 1+e sirubs:l

1
1
1 — sind, n1 — e sind,
1
1

1+e sindpn-

Q, = 0.5|In

+ sindg, e lnl + e sincbb_

Qy = 0.5{ In— sind, 1 — e sindy

Q, = isometric latitude for corresponding geodetic latitude

W, = V1 - e?sin%,
W, = VT = e?sin’d,

W, cosd,
ln(Ws c05d>n) )
sindg = ————+; = sin-! (sin
bo 0. - Q. bo (sindy)
K = Aref COSd)s exP(Qs Sind)o) = Aref COS(bn exp(Qn Sin¢o)
W, sind, W, sind,
_ 1 + sing, 1 + e sind,
Q = O'S[Inl “sind, InT—% sind,
K
R ! e R, = mapping radius of latitude of origin
° exp(Qy sindy) ® PPIng &
K
= ——— = mapping radius of central parallel
Ro exp(Qo sindy) Ro PPing P
Nyo =Ry, + N, -R N, = northing at central parallel
tand, V1 — €2 sin®
ke = Ry tando " % k; = minimum grid-scale factor
ref

These zone constants need to be computed only once for each local coordinate system designed. They are
used repeatedly in the “forward” and “inverse” transformations. For the state plane coordinate systems,
the constants are tabulated in Appendix C of Manual 5.

Forward Transformation

Input:
¢ = geodetic latitude
A = geodetic longitude (west)
Compute:
1 + sind 1 + esind
= 0.5| In—m—mmm/m - —
Q=9 5[ "T- sing cMT e Sind)]
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K

Ry = ——— Ry = mapping radius at point (¢,\)
* = exp(Qs sindy) » T TapPme F
¥ = (Ao — M) sind, vy = convergence at point (¢,A)
. V1 = e%sin% . .
k =R, Sm%w k = grid-scale factor at point (¢,\)
NL = Ry + N, — R, cosy N. = local northing at point (bA)
EL = Ey + Ry siny E;, = local easting at point (¢\)

Efficient manual computations can be performed if tables of values for Ry, v, and k are precomputed for
every minute (or other interval) of latitude/longitude within the local zone area. Then manual transformation
computations easily can be performed by interpolating appropriate values from the tables. It is the intent of
using a local coordinate system that the grid-scale factor be close enough to 1.00000 as to be ignored. This
can be verified as true or not as necessary by looking up the grid-scale factor for a given point covered by
the grid-scale factor table.

Inverse Transformation

Input:
N_ = local northing of point (N in Manual 5)
E_ = local easting of point (E in Manual 5)
Compute:
R, = Rb - NL + Nb
E' = EL - Eo
v = tan-! (E'/R’) v = local convergence for point
Ry = VRZ + E? = mapping radius at (N E;)
(%)
In{ —
R¢ . . 3
Qp = Sinde Qs = isometric latitude at (N,E,)
1 &XPQs) — 1) .
= 2 tan 1(—————— = conformal latitude at (N,E
X exp(Qq) + 1 (NLEp)

¢ = x + siny cosx(Fp + cos’(F, + cos?x(F, + cos®x(Fs + Fs + cos2y))))
(F coefficients are in radians.) ¢ = geodetic latitude at (NE,)

. _ . .
A=A - o A = geodetic longitude at (N, Ey)
VT - ¢e%sin%e
k = R, singg—————— k =grid-scale factor at (N, E,)

QAreg C°S¢

Transverse Mercator Projection

Input reference ellipsoid (GRS 1980 recommended):

6,378,137.000 m
298.2572221008827

a = semimajor axis
1/f = reciprocal flattening

o

Input local coordinate system reference ellipsoid height:
h,¢ = reference ellipsoid height in meters (not in Manual 5)

Parameters of modified ellipsoid:

¢ = 6,378,137.000 + h, (used in place of “a” in Manual 5)
1/f = 298.2572221008827 (same as for standard ellipsoid, GRS 1980)
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Compute ellipsoid constants:

e2=2f—-fP&e = Ve

n = f/(2 - f)

I = aedl — n)(1 = n?(1 + 9In%4 + 225n%/64)
u, = —3n/2 + 9n¥16

u, = 15n%16 -~ 15n%/32

ug = —35nY48 Used once below.
ug = 315n%/512

U0= 2(1.12 - 2114 +3u6 - 4u3)

U, = 8(u, — 4us + 10uy) Used to compute zone constants
U, = 32(ug — 6uy) and in “forward’’ transformation.
Ug = 128y,

v, = 3n/2 — 27n/32

= 21n%/16 — 55n%/32
ve = 151n%96

= 1097n¥/512

Used once below.

Vo= 2(vy — 2v4 + 3vg — 4vg)
V, = 8(v, — 4vs + 10vy)
V,= 32(vg — 6vg)

Ve = 128vg

Used in inverse.

Input defining parameters for transverse Mercator projection (user’s choice):

Ao = west longitude of central meridian

E, = false easting on central meridian

k, = grid-scale factor on central meridian

¢o = latitude of false origin, usually where local northing = 0.0 m
N, = false northing at false origin, usually 0.0 m

I

Compute local (elevated) coordinate system projection constants:

wo = dp + sind, cosdo(Up + cos2do[U, + cos?dy(Uy + Us + cos?dy])
So rko(.l)o

These constants are computed only once for each local coordinate system projection. After that, they are
used in computing the “forward” and “inverse” transformations. The local zone width is determined by the

grid-scale factor chosen for the central meridian. Suggested values are 0.999998 or 0.999999.

Forward Transformation

Input:
¢ = geodetic latitude
A = west geodetic longitude
Compute:
L = (A — Xg) cosod, L in radian units -
t = tand
n? = e? cos?p/(1 — &?)
o = ¢ + sind cosd(U, + cos?b[U, + cos?dp(U, + Ug cos?d)])
S = rkw
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Input:

Compute:

v
k

R — a‘!’efko

T VI = €2 sinZ¢
A, = -R
A, = 0.5Rt
A; = (1 -+ 196
A, =[5 — £ + 739 + 40?12
As = [5 — 182 + t* + n2(14 — 58t3))/120
A, = [61 — 58t + t* + m3(270 — 330t))/360
A, = (61 — 4798 + 179t* — 16)/5040

NL = Ny + S - Sp + A L1 + L¥A, + A¢L?)], local north coordinate
E. = E; + A, L1 + L3[A; + L¥As + A,L?)]) local east coordinate

C, = -t

C,=(@1+ 12 F, in Manual 5
C, = (1 + 39 + 21%/3

Cy =[5 — 42 + 39 — 24t3))/12 F, in Manual 5
Cs = (2 — t9/15

vy = CL[1 + L¥C; + C;L?)], convergence at point (¢,\)
k = k1 + C,L¥1 + C,L?)], grid-scale factor at point (¢,\)

Inverse Transformation

N, = local northing coordinate (N in Manual 5)
E. = local easting coordinate (E in Manual 5)

= (NL — Np + So)/(ker)
= w + sinw cosw(Vy + cos®w[V, + cosiw(V, + V4 cosiw)])
= e? cosdy/(1 — €?)
3reko
V1 ~ e? sin¢;
= (E. — Ey)/R;, radian units
= —t{l + )2
= —(1 + 28 + 196
= —[5 + 3t + n}(1 — 9t) — 4n{)/12
=[5 + 288 + 24t} + (6 + 8))/120
= [61 + 902 + 45t + (46 — 2528 — 90t)]/360
= —(61 + 6628 + 1320t} + 720t6)/5040
Q(1 + Q?B; + Q*B;s + B,Q3))
= ¢¢ + B,Q¥1 + Q¥B, + B,Q?Y] geodetic latitude of point (N,E;)

= A — L/cosdy geodetic longitude of point (N, E;)
=t

= (1 + w2 G, in Manual 5

= -1+t -mf-2nH3

= (1 + 5n2)/12 G, in Manual 5

= (2 + 5t} + 3t})/15

= D;Q[1 + Q*D; + DsQ%] . convergence at point (N, Ep)

= ko[l + D,Q¥1 + D,Q?¥] grid-scale factor at (N, E,)

The equations in this appendix are essentially the same as those in Manual 5, and have more than enough
terms to preserve computational accuracy for local coordinate systems. By leaving the “extra” terms in the
equations, one can use these same equations to compute state plane coordinate transformations, if one uses
the GRS 1980 ellipsoid and the defining parameters for a given state and zone. As stated on page 35 of
Manual 5, “The Aq, A, F,, (C4) and C; terms are negligible when computing within the approximate bound-
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aries of the SPCS 83 zones. To use the SPCS 83 beyond the defined SPCS 83 boundaries and to compute
UTM coordinates, the significance of these terms should be evaluated.”Examples are shown in Figures 2

and 3.

USER: EARL F. BURKHOLDER
DATE: AUGUST 30, 1992

LAMBERT CONIC CONFORMAL COORDINATE TRANSFORMATIONS
PROJECTION NAME: OREGON TECH - CUSTOM PROJECTION

REFERENCE ELLIPSOID: GEODETIC REFERENCE SYSTEM 1980

A = 6378137.0000 METERS
1/F = 298.2572221008827
REFERENCE ELLIPSOID HEIGHT FOR PROJECTION = 1315.0000 METERS

MODIFIED ELLIPSOID FOR: OREGON TECH - CUSTOM PROJECTION
A = 6379452.0000 METERS
1/F = 298.2572221008827

ZONE PARAMETERS:

NORTH STANDARD PARALLEL 42 18 0.000000
SOUTH STANDARD PARALLEL 42 14 0.000000
FALSE ORIGIN LATITUDE 42 12 0.000000
CENTRAL MERIDIAN (W) 121 47 0.000000
FALSE EASTING ON CM 20000.0000 METERS
NORTHING AT FALSE ORIGIN 0.0000 METERS
ZONE CONSTANTS:

CENTRAL PARALLEL 42 16 0.010731
SCALE FACTOR ON CENTRAL PARALLEL 0.999999831390399
MAPPING RADIUS OF EQUATOR 12128718.29345 METERS
MAPPING RADIUS OF FALSE ORIGIN 7037182.78425 METERS
NORTHING OF CENTRAL PARALLEL ON CM 7407.04610 METERS
CONFORMAL LATITUDE CONSTANTS: F(0) = 0.006686920927

F(2) = 0.000052014583 F(4) = 0.000000554458

F(6) = 0.000000006718 F(8) = 0.000000000089

TRANSFORMATIONS:

NAME OF STATION: PUB - NAD 83 (BY NGS IN 1985) FORWARD
LATITUDE: 42 15 32.915660 NORTHING 6570.8535 METERS
LONGITUDE: 121 46 54.802710 EASTING 20119.1490 METERS
CONVERGENCE: 0 O 3.50 SCALE FACTOR: 0.999999839986

NAME OF STATION: PUB - NAD 83 (BY NGS IN 1985) INVERSE
LATITUDE: 42 15 32.915659 NORTHING 6570.8535 METERS
LONGITUDE: : 121 .46 54.802708 EASTING .. . :20119.1490 METERS :;
CONVERGENCE:~ - ' 0 0'“3.50 SCALE FACTOR: -. 0.999999839986 _ .

Figure 2. Example of local lambert conic conformal projection. : i

S L s ~ Yy o
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USER: EARL F. BURKHOLDER
DATE: AUGUST 30, 1992

TRANSVERSE MERCATOR PROJECTION TRANSFORMATIONS
PROJECTION NAME: OREGON TECH - CUSTOM PROJECTION

REFERENCE ELLIPSOID: GEODETIC REFERENCE SYSTEM 1980

A = 6378137.0000 METERS
1/F = 298.2572221008827
REFERENCE ELLIPSOID HEIGHT FOR PROJECTION = 1315.0000 METERS

MODIFIED ELLIPSOID FOR: OREGON TECH - CUSTOM PROJECTION

A = 6379452.0000 METERS
1/F = 298.2572221008827
ZONE PARAMETERS:
. CENTRAL MERIDIAN (W) 121 47 0.000000
B LATITUDE OF FALSE ORIGIN 42 12 0.000000
FALSE NORTHING AT FALSE ORIGIN 20000.0000 METERS
FALSE EASTING ON CENTRAL MERIDIAN 50000.0000 METERS
’ SCALE FACTOR ON CENTRAL MERIDIAN 0.9993898000000
ZONE CONSTANTS:
RECTIFYING SPHERE RADIUS 6368761.9422 METERS

RECTIFYING LATITUDE CONSTANTS:

U(0) = =-0.005048250776 V(0) = 0.005022893948
U(2) = 0.000021259204 V(2) = 0.000029370625
U(4) = -0.000000111423 V(4) = 0.000000235059
U(6) = 0.000000000626 V(6) = 0.000000002181
RECTIFYING LATITUDE OF FALSE ORIGIN 42 3 23.040620 3

GRID MERIDIAN ARC TO FALSE ORIGIN 4674806.1973 METERS

TRANSFORMATIONS:

NAME OF STATION: PUB - NAD 83 (BY NGS IN 1985) FORWARD
LATITUDE: 42 15 32.915660 NORTHING 26570.8398 METERS
LONGITUDE: 121 46 54.802710 EASTING 50119.1487 METERS
CONVERGENCE: 0 0 3.50 SCALE FACTOR: 0.999998000175

NAME OF STATION: PUB - NAD 83 (BY NGS IN 1985) INVERSE
LATITUDE: 42 15 32.915659 NORTHING 26570.8398 METERS
LONGITUDE: 121 46 54.802712 EASTING 50119.1487 METERS
CONVERGENCE: 0 0 3.50 SCALE FACTOR: 0.999998000175

Figure 3. Example of local transverse Mercator projection. S0 mEAas

T/ DOS-BASED MEnuU-DRIVEN PRoGRAM, LocAlcoR.EXE, 15
AVAILABLE FREE FRom EarL F.BURKHOLOER AT

“_jloﬁa/co_so@élﬂl\/f‘r. C‘om“ //‘23/.2,99¢
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