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Introduction 

 
Least squares adjustment, that is,  the sum of the squares of the residuals will be a 
minimum, has been proven and accepted as the best possible method for adjusting 
survey data.   
 
Within reason, it is also true that, depending upon how weights are selected, you can get 
any answer you want using least squares.  Therefore, the issue in discussing  “How 
good are my results?” switches from the choice of the tool (least squares) to how the tool 
is used.  Of course, the input data must first be checked and verified blunder-free. 
 
Given blunder-free survey data and a specific statement of how weights are selected, all 
least squares packages should provide the same answers.  Differences from one brand 
software to another will have to do with the survey data input (formats, weights etc) and 
what information is included in the report after the adjustment is completed.  This article 
looks at the differences caused by using 3 different weighting assumptions on a small 
network. 
 
The example used in this paper is a GPS network based upon two A-order HARN points.  
Station “Reilly” is located in the central horseshoe of the NMSU campus and Station 
“Crucesair” is located at the Las Cruces airport some 16 kilometers west of campus.  
The network consists of 7 independent baselines connecting 4 additional points to the 
existing HARN stations as shown in Figure 1. 
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Figure 1  GPS Network at NMSU 
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The GPS baselines shown and used were collected on four different dates over a period 
of 5 years.  These are not the only baselines on campus nor are they the only obser-
vations between the points in question.  These baselines were selected because they 
show excellent consistency, are independent, and include often used points.  The results 
are also used to show the difference between network accuracy and local accuracy.    
 

Control Values and Observed Vectors 
 
The NAD83 geocentric X/Y/Z coordinates for A-order HARN stations “Reilly” and 
“Crucesair” are as published by the National Geodetic Survey (NGS) and were held fixed 
in this exercise.  They are: 
 
         Station Reilly      Station Crucesair
  X  =  -1,556,177.615 m X  =  -1,571,430.672 m 
  Y  =  -5,169,235.319 m Y  =  -5,164,782.312 m 
  Z  =   3,387,551.709 m Z  =   3,387,603.188 m 
 
Single frequency Trimble GPS receivers were used to collect static data, 57 minutes 
being the shortest common observation time for any of the 7 baselines.  The baseline 
components and the covariance matrix for each observed baseline as determined by 
Trimble software using default processing parameters are: 
 
Baseline 1 – Crucesair to USPA – observed 3/28/02  (use subscript CA): 
              Sxx   Syy       Szz 
   ∆XCA  =     15,752.080 m Sxx  6.321492E-06  
   ∆YCA  =      -5,179.102 m Syy  1.545948E-05     4.739877E-05  
   ∆ZCA  =         -903.089 m Szz -1.061303E-05    -3.184780E-05     2.388036E-05 
 
Baseline 2 – USPA to USPB – observed 11/12/03 (use subscript AB): 
              Sxx   Syy       Szz 
   ∆XAB  =           14.964 m Sxx  1.412453E-06  
   ∆YAB  =          -15.365 m Syy  1.285418E-06     4.653209E-06  
   ∆ZAB  =          -16.664 m Szz -5.669127E-07    -1.658118E-06     1.872469E-06 
 
Baseline 3 – USPA to Pseudo – observed 3/28/02 (use subscript AP): 
              Sxx   Syy       Szz 
   ∆XAP  =        -528.036 m Sxx  9.505016E-08  
   ∆YAP  =         560.657 m Syy  8.957064E-08     3.729339E-07  
   ∆ZAP  =         585.897 m Szz -5.022282E-08    -2.221975E-07     3.363763E-07 
 
Baseline 4 – USPB to Reilly  - observed 3/28/02 (use subscript BR): 
              Sxx   Syy       Szz 
   ∆XBR  =       -514.003 m Sxx  3.650165E-07  
   ∆YBR  =        741.438 m Syy  9.024127E-07     2.796189E-06  
   ∆ZBR  =        868.293 m Szz -6.189027E-07    -1.881145E-06     1.410196E-06 
 
Baseline 5 – Bromilow to Reilly  - observed 12/10/98 (use subscript MR): 
              Sxx   Syy       Szz 
   ∆XMR  =         32.134 m Sxx  2.762550E-07  
   ∆YMR  =         51.175 m Syy  3.200312E-07     6.870545E-07  
   ∆ZMR  =         94.198 m Szz -2.008940E-07    -4.006259E-07     4.661596E-07 
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Baseline 6 – Pseudo to Reilly – observed 1/23/02 (use subscript PR): 
              Sxx   Syy       Szz 
   ∆XPR  =         29.000 m Sxx  1.325760E-07  
   ∆YPR  =       165.422 m Syy  1.317165E-07     5.265054E-07  
   ∆ZPR  =       265.719 m Szz -7.253348E-08    -3.020965E-07     5.006575E-07 
 
Baseline 7 – Bromilow to Pseudo – observed 1/23/02 (use subscript MP): 
              Sxx   Syy       Szz 
   ∆XMP  =           3.136 m Sxx  3.367818E-07  
   ∆YMP  =      -114.242 m Syy  3.937476E-07     8.766570E-07  
   ∆ZMP  =      -171.527 m Szz -5.186521E-07    -8.977932E-07     1.446501E-06 
 
 

Blunder Checks 
 
In order to verify the absence of blunders in the baselines, misclosures are computed for 
each component (X/Y/Z)  as follows: 
 
Traverse including baselines 1, 2, and 4 (from “Crucesair” to “Reilly”): 
 
    X   Y   Z 
      Station Crucesair -1,571,430.672 m -5,164,782.312 m 3,387,603.188 m 
 Baseline 1       15,752.080 m        -5,179.102 m          -903.089 m 
 Baseline 2              14.964 m             -15.365 m            -16.664 m 
 Baseline 4           -514.003 m            741.438 m           868.293 m 
     Computed value -1,556,177.631 m -5,169,235.341 m 3,387,551.728 m  
     Station Reilly -1,556,177.615 m -5,169,235.319 m 3,387,551.709 m 
     Misclosures   -0.016 m   -0.022 m   0.019 m 
 
Loop including baselines 2-3-7-5-4 (being careful to preserve sign convention): 
 
 Baseline 2            -14.964 m              15.365 m            16.664 m 
 Baseline 3          -528.036 m            560.657 m          585.897 m 
 Baseline 7  -3.136 m            114.242 m          171.527 m  
 Baseline 5  32.134 m              51.175 m            94.198 m 
 Baseline 4           514.003 m           -741.438 m         -868.293 m
     Misclosures    0.001 m    0.001 m             -0.007 m 
      
Loop including baselines 5-6-7 (being careful to preserve sign convention): 
 
 Baseline 5             32.134 m              51.175 m            94.198 m 
 Baseline 6            -29.000 m           -165.422 m         -265.719 m 
 Baseline 7              -3.136 m            114.242 m          171.527 m
     Misclosures   -0.002 m   -0.005 m              0.006 m 
 
All baselines have been included in the checks and all misclosures are acceptable.  
Therefore, it is legitimate to perform a least squares adjustment of the 7 baselines to 
determine the “best” adjusted position for points USPA, USPB, Pseudo, and Bromilow.  
Any adjustment should also provide information on the quality of the answers, i.e., “What 
is the standard deviation of the computed position?” - in both the geocentric (X/Y/Z) 
reference frame and in the local (east/north/up) reference frame.  This paper uses 3 
different weighting schemes and shows a comparison of the various answers. 
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Adjustment Model and Procedure 
 
Although there may be variations,  the following GPS network solution formulation has 
been accepted and is often used.  Matrices are shown in bold type. 
 
1. Each baseline includes 3 observations – one each in ∆X, ∆Y, and ∆Z.  In this case, 

there are 7 baselines, so the solution will include 21 observation equations. 
 
2. Each new point has an unknown position; Xi, Yi, and Zi.  There will be 12 answers 

(parameters) for the 4 new points.  It takes 1 observation to find 1 parameter.  The 
“extra” observations are known (in statistics) as degrees-of-freedom.  In surveying 
terms, extra observations are known as redundancies.  In this case, r = 21 – 12 = 9. 

 
3. Equations for each of the 7 baselines (21 equations in all) are written in the form: 

 
Xthere  =   Xhere + ∆Xhere to there  + a residual   

  Ythere  =   Yhere + ∆Yhere to there  + a residual   
  Zthere  =   Zhere + ∆Zhere to there  + a residual   
 

a. A residual, vi, is given whatever value it takes to make each equation “correct.”   
b. The GPS observations are ∆Xi, ∆Yi, and ∆Zi for each of the 7 baselines. 
c. The coordinate value of X, Y, and Z of “here” or “there” may be known or 

unknown.  If known, the value is combined with the GPS observed ∆Xi, ∆Yi, or 
∆Zi as in the following solution section.  

d. If the value of X, Y, or Z at a named station is unknown, it is called a 
parameter.  A symbol and subscript, ∆i, is used to represent each parameter. 

 
4. A least squares matrix solution requires the equations to be written as v + B∆ = f.  

Once the problem is written in this form, the matrix solution is obtained as: 
 

∆  = (Bt W B)-1Bt W f  or stated differently, ∆ = N-1 Bt W f. where; 
 
∆ is a vector of parameters (answers) - not to be confused with ∆X/∆Y/∆Z.   
N is a matrix of normal equations.  N-1 contains statistics for the answers. 
W is the weight matrix.  Various values of W is the issue in this paper. 

 B is a matrix of coefficients for the unknown parameters. 
       f is a vector of constants computed from known values and observations  

v is a vector of residuals as noted above. 
 
5. Once the parameters are known, the residuals are computed as: 
 

    v  =  f - B∆ 
 
6. The estimated (a posteriori) reference variance is computed as: 
 

      (sigma0 hat)2  = (vt W v) / r,   where r is the redundancy. 
  

7. The covariance matrix of the computed positions in the X/Y/Z reference frame, is 
computed as: 

 
ΣX/Y/Z  =  (sigma0 hat)2 N-1   
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8. The standard deviations of the computed X, Y, Z coordinates are the square roots 

of the diagonal elements of the ΣX/Y/Z covariance matrix.  The local reference frame 
standard deviations at each point are computed as the square root of the diagonal 
elements after the geocentric covariance matrix has been rotated to the local e/n/u 
(right-handed) reference frame using the following rotation matrix. 

   

         Σe/n/u  =  R ΣX/Y/Z Rt   where,   R =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

φλφλφ
φλφλφ

λλ

sin    sin cos       cos cos
cos    sin sin-     cos sin-

0           cos              sin  

 
With regard to the rotation matrix above, latitude is positive north of the equator 
and negative in the southern hemisphere.  Longitude is counted as positive 0º to 
360º eastward from the Greenwich Meridian.  West longitude (the convention used 
in North America) is used as a negative number.   

 
9. The latitude and longitude for the point must be computed from the geocentric 

X/Y/Z values of the point.  The longitude computation is straightforward but the 
latitude requires iteration.  The longitude (0º to 360º eastward) is computed as: 

 

X
Y

=λtan   or,  with due regard to signs and quadrants, ⎟
⎠
⎞

⎜
⎝
⎛= −

X
Y1tanλ   

 
The equation for latitude is:         
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 but the problem is that the unknown variable, φ, is on both sides of the equation.   
That means the equation must be solved by iteration.  The first approximation is 
computed as: 
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These values of φ0 and N0 are then used to compute another value of φ and N as: 
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A second latitude, φ2, is computed using the equation above but with updated φ and 
N.  The iteration continues until the value of latitude changes less than some 
tolerance selected by the user.  Typically, no more than 2 or 3 iterations are required 
to obtain a latitude accurate enough (say within 0.001 seconds) to be used in the 
rotation matrix.  Other methods for performing the iteration can also be used. 
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The Solution 
 
Following the procedure outlined above, the first step is to write the observation 
equations in standard form, then re-write them in the specific form of v + B∆ = f.  The 
subscripts suggested earlier are used.  The constant f vector is computed from known 
values on the right side of the equals sign in the matrix solution formulation. 
 
 
 Observation form  Matrix Solution form   Constant = f            
 
  1. XA = XC + ∆XCA + v1  v1 – XA = -XC - ∆XCA    =  f1  =  1,555,678.592  
  2. YA = YC + ∆YCA + v2  v2 – YA = -YC - ∆YCA    =  f2  =  5,169,961.414  
  3. ZA = ZC + ∆ZCA + v3  v3 – ZA = -ZC - ∆ZCA    =  f3  = -3,386,700.099 
   
  4. XB = XA + ∆XAB + v4  v4 + XA – XB = -∆XAB  =  f4  =             -14.964 
  5. YB = YA + ∆YAB + v5  v5 + YA – YB = -∆YAB  =  f5  =              15.365  
  6. ZB = ZA + ∆ZAB + v6  v6 + ZA – ZB = -∆ZAB   =  f6  =              16.664          
 
  7. XP = XA + ∆XAP + v7  v7 + XA - XP = -∆XAP  =  f7  =             528.036  
  8. YP = YA + ∆YAP + v8  v8 + YA - YP = -∆YAP  =  f8  =           -560.657 
  9. ZP = ZA + ∆ZAP + v9  v9 + ZA - ZP  = -∆ZAP  =  f9  =           -585.897 
   
 10. XR = XB + ∆XBR + v10  v10 + XB = XR - ∆XBR  =  f10 =  -1,555,663.612  
 11. YR = YB + ∆YBR + v11  v11 + YB = YR - ∆YBR  =  f11 =  -5,169,976.757  
 12. ZR = ZB + ∆ZBR + v12  v12 + ZB = ZR - ∆ZBR   =  f12 =   3,386,683.416  
 
 13. XR = XM + ∆XMR + v13  v13 + XM = XR - ∆XMR  =  f13 =  -1,556,209.749  
 14. YR = YM + ∆YMR + v14  v14 + YM = YR - ∆YMR  =  f14 =  -5,169,286.494  
 15. ZR = ZM + ∆ZMR + v15  v15 + ZM = ZR - ∆ZMR   =  f15 =    3,387,457.511  
 
 16. XR = XP + ∆XPR + v16  v16 + XP = XR - ∆XPR   =  f16 =  -1,556,206.615  
 17. YR = YP + ∆YPR + v17  v17 + YP = YR - ∆YPR   =  f17 =  -5,169,400.741  
 18. ZR = ZP + ∆ZPR + v18  v18 + ZP = ZR - ∆ZPR    =  f18 =  -3,387,285.990 
   
 19. XP = XM + ∆XMP + v19  v19 + XM – XP = - ∆XMP =  f19 =                -3.136 
 20. YP = YM + ∆YMP + v20  v20 + YM  - YP = - ∆YMP =  f20 =            114.242  
 21. ZP = ZM + ∆ZMP + v21  v21 + ZM  - ZP = - ∆ZMP =  f21 =             171.527 
 
The B matrix is shown below and the elements are obtained as the partial derivatives of 
the unknown parameters in the equations above.  In this case, the partial derivative 
values are either 0 or 1.  The f matrix is a vector of constants as computed above.  The 
weight matrix, W, is the matrix to be changed for the different solutions.  The matrix 
manipulations to find the solution are based upon those three matrices B, W and f. 
 
For the first solution, the weight matrix is taken to be identity (1’s on the diagonal and 0’s 
otherwise).  That means all observations are of equal weight.  The second solution uses 
the standard deviation of the observed ∆X, ∆Y, ∆Z of each baseline.  Each weight is 1/σ2 
of the observation and appears on the diagonal of the weight matrix.  The off-diagonal 
elements are all 0.  The third option uses the full covariance matrix of each baseline to 
determine the weights.  Using the full covariance matrix utilizes the correlation between 
baseline components and should provide a better network solution. 
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Using the equations above, the problem is written in the v + B∆ = f matrix format.  Note, 
the values in the B matrix are all 0’s and 1’s (partial derivatives).  The constant f is a 
vector computed in the equations above.  The symbol, fi , is used below rather than the 
actual values due to margin space limitations. 
 
 
   V      +                                         B                                                           ∆     =        f 
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 1     0      0        1-     0     0       0       0       0       0      0     0  
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0      0      0        0      0      0       1-     0      0        1      0      0  
0      0      0        0      0      0       0      1-     0        0      1      0  
0      0      0        0      0      0       0      0       1-      0      0      1  
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A

 
The first solution will utilize the identity matrix as the weight matrix.  It has 1’s on the 
diagonal and 0’s everywhere else.  The 21x21 weight matrix for equal weights is shown 
on the next page. 
 
As stated previously, the solution to find the answers (unknown parameters) is the matrix 
manipulation: 
 
    ∆  =  (Bt W B)-1 Bt W f           Note, N-1 = (Bt W B)-1.  It is used later.   
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Option 1 of 3 – Equal Weights 
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0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0 
0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0 
0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0 
0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0 
0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0 
0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0 
0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0 
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0 
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0 
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0 
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0 
 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0 

0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1 

    W

 
The matrix operations can be performed by various math software packages including 
an excel spreadsheet, MathCAD, and others.  The “Matrix” program which comes with 
the textbook, Elementary Surveying (10th or 11th Ed) was used in this example.  “Matrix” 
is also available free as a download from the Penn State Surveying program web site  - 
http://surveying.wb.psu.edu. 
 
The answers for the parameters (X/Y/Z coordinates for the unknown points) are: 
 
         USPA        USPB  Pseudo        Bromilow
 
   X -1,555,678.5843 m      -1,555,663.6161 m    -1,556,206.6167 m -1,556,209.7508 m 
   Y -5,169,961.4037 m      -5,169,976.7628 m    -5,169,400.7423 m -5,169,286.4971 m 
   Z  3,386,700.0922 m       3,386,683.4221 m     3,387,285.9885 m  3,387,457.5132 m 
 
Using these values for the unknown parameters, the computation continues to find each  
residual and the estimated reference variance.  Using “Matrix” computational tools, the 
residuals are computed as: 
 
 v  =  f  -  B ∆ 
 
The values of the residuals and the length of the associated baselines are: 
 
    Residual        Baseline      Length

∆X  0.0077 m  
    ∆Y  0.0103 m  Crucesair to USPA  16,606 m 
    ∆Z -0.0068 m 
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∆X  0.0041 m 
∆Y  0.0059 m  USPA to USPB         27 m 
∆Z -0.0061 m 

 
∆X  0.0036 m 
∆Y  0.0044 m  USPA to Pseudo       968 m 

    ∆Z -0.0007 m 
 
    ∆X  0.0041 m 
    ∆Y  0.0059 m  USPB to Reilly   1,252 m   
    ∆Z -0.0061 m 
 
    ∆X  0.0019 m 
    ∆Y  0.0031 m  Bromilow to Reilly     112 m 
    ∆Z -0.0022 m 
 
    ∆X  0.0017 m 
    ∆Y  0.0013 m  Pseudo to Reilly     314 m 
    ∆Z  0.0015 m 
 
    ∆X -0.0019 m 
    ∆Y -0.0031 m  Bromilow to Pseudo     206 m 
    ∆Z  0.0022 m 
 
Using these residuals, the estimated (a posteriori) reference variance is: 
 
 (sigma0 hat)2  =   vt W v  /  r  =   0.00046538 / 9  =  0.00005171 
 
The standard deviation of each X/Y/Z coordinate is obtained from  (sigma0 hat)2 N-1 
where the variance of each parameter is on the diagonal of the N-1 matrix. 
 
     σX  =  √(0.00005171 * 0.47619)  =  0.0050 m  
    USPA: σY  =  √(0.00005171 * 0.47619)  =  0.0050 m   
      σZ  =  √(0.00005171 * 0.47619)  =  0.0050 m   
 
       σX  =  √(0.00005171 * 0.61905)  =  0.0056 m 
     USPB:  σY  =  √(0.00005171 * 0.61905)  =  0.0056 m   
      σZ  =  √(0.00005171 * 0.61905)  =  0.0056 m   
 
       σX  =  √(0.00005171 * 0.47619)  =  0.0050 m 
     Pseudo:  σY  =  √(0.00005171 * 0.47619)  =  0.0050 m   
      σZ  =  √(0.00005171 * 0.47619)  =  0.0050 m   
 
      σX  =  √(0.00005171 * 0.61905)  =  0.0056 m 
    Bromilow:  σY  =  √(0.00005171 * 0.61905)  =  0.0056 m   
      σZ  =  √(0.00005171 * 0.61905)  =  0.0056 m   
 
The N-1 matrix below is a 12 x 12 symmetrical matrix that contains the cofactors of the 
parameters.  When multiplied by the estimated reference variance, (sigma0 hat)2, each 
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diagonal element becomes the variance of the parameter.  The standard deviation of 
each parameter is the square root of its variance.  See computations above. 
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0.61905        0            0       0.23810       0            0          0.04762      0              0        0.09524      0            0    
0        0.61905        0             0      0.23810       0               0      0.04762         0             0      0.09524       0    
0             0         0.61905       0          0        0.23810          0          0         0.04762         0          0       0.09524

0.23810       0             0      0.47619       0            0          0.09524      0              0        0.19048      0             0    
0        0.23810        0             0     0.47619       0               0      0.09524         0             0      0.19048        0    
0            0         0.23810        0         0         0.47619         0          0          0.09524        0          0        0.19048

  0.04762      0              0      0.09524      0             0         0.61905      0              0        0.23810      0              0    
0        0.04762        0             0    0.09524        0               0      0.61905        0              0     0.23810         0    
0            0         0.04762        0          0        0.09524         0          0         0.61905         0          0        0.23810

0.09524      0              0      0.19048      0             0        0.23810      0               0        0.47619     0               0    
0      0.09524         0             0    0.19048        0               0     0.23810         0              0     0.47619         0    
0            0        0.09524        0          0        0.19048         0          0         0.23810         0          0        0.47619

 
Next, the computed X/Y/Z position of each new point is used to compute the latitude and 
longitude of the point.  Then, those geodetic positions are used to rotate the X/Y/Z 
reference frame standard deviations to the local reference frame.  Note, the first 3 x 3 
sub matrix in N-1 is associated with point USPA, the second 3 x 3 sub matrix is 
associated with USPB, the third 3 x 3 sub matrix is associated with Pseudo, and the last 
3 x 3 sub matrix is associated with Bromilow.  In each case the 3 x 3 sub matrix is a 
diagonal matrix with 0’s on the off-diagonal.  Also note other off-diagonal 3 x 3 sub 
matrices reflect correlation between points.  That covariance information is used to 
compute local accuracies between points and is described in a subsequent section.  
 
The alogrithm for rotating standard deviations from one reference frame to another is 
given in steps 8 and 9 above.  The BURKORD9 software (gratis from the author) was 
used to compute the latitude and longitude (and ellipsoid height) of each point and to 
rotate the geocentric standard deviations to the local reference frame.  The results are: 
 
 

    Geocentric Coordinates and sigma     Geodetic Coordinates and local sigma  
 
Station USPA: 
 
 X  =   -1,555,678.584 m  +/- 0.0050 m       φ =   32º  16’ 23.”00012 N  +/- 0.0050 m  (N)  
 Y  = -5,169,961.404 m  +/- 0.0050 m       λ = 106º 44’ 48.”90828 W +/- 0.0050 m  (E) 
 Z  =  3,386,700.092 m  +/- 0.0050 m        h =   1,178.025 m              +/- 0.0050 m  (U) 
 
Station USPB: 
 
 X  =   -1,555,663.616 m  +/- 0.0056 m       φ =   32º  16’ 22.”36248 N  +/- 0.0056 m  (N)  
 Y  = -5,169,976.763 m  +/- 0.0056 m       λ = 106º 44’ 48.”19160 W +/- 0.0056 m  (E) 
 Z  =  3,386,683.422 m  +/- 0.0056 m       h =   1,177.912 m               +/- 0.0056 m  (U) 
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Station Pseudo: 
 
 X  =   -1,556,206.617 m  +/- 0.0050 m       φ =   32º  16’ 45.”74650 N  +/- 0.0050 m  (N)  
 Y  = -5,169,400.742 m  +/- 0.0050 m       λ = 106º 45’ 14.”39978 W +/- 0.0050 m  (E) 
 Z  =  3,387,285.988 m  +/- 0.0050 m       h =   1,165.644 m               +/- 0.0050 m  (U) 
 
Station Bromilow: 
 
 X  =   -1,556,209.751 m  +/- 0.0056 m       φ =   32º  16’ 52.”33408 N  +/- 0.0056 m  (N)  
 Y  = -5,169,286.497 m  +/- 0.0056 m       λ = 106º 45’ 15.”77275 W +/- 0.0056 m  (E) 
 Z  =  3,386,457.513 m  +/- 0.0056 m       h =   1,165.525 m               +/- 0.0056 m  (U) 
 
Note that, when using equal weights, the uncertainty is spherical.  That is, the standard 
deviations at a point are the same for each component and remain the same when 
rotated to the local reference frame.  That will not be true for options 2 and 3. 
 
 

Option Two – Weights by Standard Deviation of Baseline Components 
 
For the option 2, the weight matrix is based upon the variance (standard deviation 
squared) of each component of each baseline.  The matrix is 21 rows x 21 columns but 
the values are only on the diagonal.  All off-diagonal elements are 0.  Therefore, only the 
diagonal elements are listed and determined individually as σ0

2 / σ2.  The user may 
choose any value for σ0

2.  If σ0
2 is chosen = 1.0 as below, then wi,i = 1 / variance.          

 
        Baseline          Component     Variance         Element    Weight
 
       ∆X:  6.321492E-06        w1,1   158,190.5 
Crucesair to USPA     ∆Y:  4.739877E-05        w2,2     21,097.6 

         ∆Z:  2.388036E-05        w3,3      41,875.4  
 
       ∆X:  1.412453E-06        w4,4                707,988.2 
USPA to USPB          ∆Y:  4.653209E-06        w5,5   214,905.4 

         ∆Z:  1.872469E-06        w6,6                534,054.2  
 
       ∆X:  9.505016E-08        w7,7           10,520,760.8 
USPA to Pseudo     ∆Y:  3.729339E-07        w8,8             2,681,440.3 

         ∆Z:  3.363763E-07        w9,9             2,972,861.0  
 
       ∆X:  3.650165E-07        w10,10          2,739,602.2 
USPB to Reilly      ∆Y:  2.796189E-06        w11,11  357,629.6 

         ∆Z:  1.410196E-06        w12,12   709,121.3  
 

       ∆X:  2.762550E-07        w13,13          3,619,844.0 
Bromilow to Reilly         ∆Y:  6.870545E-07        w14,14          1,455,488.6 

         ∆Z:  4.661596E-07        w15,15          2,145,188.0  
 
       ∆X:  1.325760E-07        w16,16          7,542,843.4 
Pseudo to Reilly     ∆Y:  5.265054E-07        w17,17          1,899,315.7 

         ∆Z:  5.006575E-07        w18,18          1,997,373.4  
 

       ∆X:  3.367818E-07        w19,19          2,969,281.6 
Bromilow to Pseudo        ∆Y:  8.766570E-07        w20,20          1,140,696.7 

         ∆Z:  1.446501E-06        w21,21   691,323.4  
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An incidental comment is that weights are relative.  The user may choose any value for 
σ0

2.  That means that each weight could be multiplied by the same number such that the 
smallest weight is 1.00.  Similarly, all the weights could be multiplied by another number 
such that the largest weight is 1.00.  In either case, it would not change the answer or 
the statistics, but it would change the magnitude of the numbers that appear in the N-1 
matrix.  Using the very large weights as shown above means that the numbers in the N-1 
matrix below are quite small.  That is why the N-1 values are written in scientific notation.   
 
Using the same B matrix and f vector as before along with the revised weight matrix, the 
answers for the parameters (option 2 X/Y/Z coordinates for the unknown points) are: 
 
         USPA        USPB  Pseudo        Bromilow
   X -1,555,678.579 m       -1,555,663.612 m     -1,556,206.615 m -1,556,209.750 m 
   Y -5,169,961.396 m       -5,169,976.759 m     -5,169,400.740 m -5,169,286.496 m 
   Z  3,386,700.090 m        3,386,683.420 m      3,387,285.988 m  3,387,457.512 m 
 
Computing the residuals as before but using the updated values of the parameters, the 
values of the residuals and the length of the associated baselines are: 
 
    Residual        Baseline      Length

 
   ∆X:  0.0132 m  

       ∆Y:  0.0174 m  Crucesair to USPA  16,606 m 
       ∆Z: -0.0092 m 
 
       ∆X:  0.0022 m 
       ∆Y:  0.0028 m  USPA to USPB         27 m 
       ∆Z: -0.0056 m 
 

   ∆X:  0.0001 m 
   ∆Y: -0.0001 m  USPA to Pseudo       968 m 
   ∆Z:  0.0009 m 

 
   ∆X:  0.0006 m 
   ∆Y:  0.0017 m  USPB to Reilly   1,252 m   
   ∆Z: -0.0042 m 

 
   ∆X:  0.0008 m 
   ∆Y:  0.0016 m  Bromilow to Reilly     112 m 
   ∆Z: -0.0009 m 

 
   ∆X: -0.0003 m 
   ∆Y: -0.0014 m  Pseudo to Reilly     314 m 
   ∆Z:  0.0023 m 

 
   ∆X: -0.0009 m 
   ∆Y: -0.0020 m  Bromilow to Pseudo     206 m 
   ∆Z:  0.0028 m 

 
Using these residuals, the estimated (a posteriori) reference variance is: 
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 (sigma0 hat)2  =   vt W v  /  r  =   111.587 / 9  =  12.3986 
 
 
The standard deviation of each X/Y/Z coordinate is obtained from (sigma0 hat)2 x N-1   
where the variance of each parameter is computed from the diagonal element of N-1. 
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07-   3.735E        0            0    08-   8.610E       0            0      08-   3.313E      0              0     08-   7.712E      0            0    
0      07-   4.571E       0             0    07-   1.636E      0               0   08-   5.805E        0             0   07-   1.546E       0    
0             0      07-   1.724E       0          0      08-   4.576E         0          0     09-   8.794E        0           0   08-   4.282E

08-   8.610E      0             0    07-   3.533E      0            0       07-   1.359E      0              0    07-   3.164E      0             0    
0      07-   1.636E       0             0   07-   3.723E      0               0   07-   1.321E        0             0   07-   3.520E       0    
0            0     08-   4.576E        0          0      07-   1.015E        0          0      08-   1.951E        0          0    08-   9.503E

  08-   3.313E      0              0    07-   1.359E     0             0     07-   9.123E      0              0     07-   2.512E     0              0    
0     08-   5.805E       0             0   07-   1.321E      0               0   06-   1.843E       0              0   07-   2.572E       0    
0            0       09-   8.794E      0          0      08-   1.951E        0          0      07-   2.976E        0          0   08-   3.653E

08-   7.712E      0              0   07-   3.164E      0             0    07-   2.512E      0               0      7-   5.846E     0               0    
0    07-   1.546E        0             0   07-   3.520E      0              0   07-   2.572E       0              0   07-   6.852E       0    
0             0      08-   4.282E       0          0      08-   9.503E       0         0      08-   3.653E         0          0    07-   1.779E

 
 

σX  =  √(12.3986 * 1.779E-07)  =  0.0015 m  
        USPA:  σY  =  √(12.3986 * 6.852E-07)  =  0.0029 m   
       σZ  =  √(12.3986 * 5.846E-07)  =  0.0027 m   
 
    σX  =  √(12.3986 * 2.976E-07)  =  0.0019 m 
        USPB:  σY  =  √(12.3986 * 1.843E-06)  =  0.0048 m   

      σZ  =  √(12.3986 * 9.123E-07)  =  0.0034 m   
 

σX  =  √(12.3986 * 1.015E-07)  =  0.0011 m 
        Pseudo:  σY  =  √(12.3986 * 3.723E-07)  =  0.0021 m   
       σZ  =  √(12.3986 * 3.533E-07)  =  0.0021 m   
 
       σX  =  √(12.3986 * 1.724E-07)  =  0.0015 m 
       Bromilow:  σY  =  √(12.3986 * 4.571E-07)  =  0.0024 m   
       σZ  =  √(12.3986 * 3.735E-07)  =  0.0022 m   
 
As before, the X/Y/Z position of each new point is used to compute the latitude and 
longitude of the point.  Then, those geodetic positions are used to rotate the X/Y/Z 
reference frame standard deviations to the local reference frame.  The results are: 
 

    Geocentric Coordinates and sigma     Geodetic Coordinates and local sigma  
 
Station USPA: 
 
 X  =   -1,555,678.579 m  +/- 0.0015 m       φ =   32º  16’ 23.”00020 N  +/- 0.0027 m  (N)  
 Y  = -5,169,961.396 m  +/- 0.0029 m       λ = 106º 44’ 48.”90816 W +/- 0.0017 m  (E) 
 Z  =  3,386,700.090 m  +/- 0.0027 m       h =   1,178.016 m               +/- 0.0028 m  (U) 
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Station USPB: 
 
 X  =   -1,555,663.612 m  +/- 0.0019 m       φ =   32º  16’ 22.”36251 N  +/- 0.0038 m  (N)  
 Y  = -5,169,976.759 m  +/- 0.0048 m       λ = 106º 44’ 48.”19151 W +/- 0.0023 m  (E) 
 Z  =  3,386,683.420 m  +/- 0.0034 m       h =   1,177.907 m               +/- 0.0041 m  (U) 
 
Station Pseudo: 
 
 X  =   -1,556,206.615 m  +/- 0.0011 m       φ =   32º  16’ 45.”74653 N  +/- 0.0021 m  (N)  
 Y  = -5,169,400.740 m  +/- 0.0021 m       λ = 106º 45’ 14.”39974 W +/- 0.0012 m  (E) 
 Z  =  3,387,285.988 m  +/- 0.0021 m       h =   1,165.641 m               +/- 0.0020 m  (U) 
 
Station Bromilow: 
 
 X  =   -1,556,209.750 m  +/- 0.0015 m       φ =   32º  16’ 52.”33407 N  +/- 0.0022 m  (N)  
 Y  = -5,169,286.496 m  +/- 0.0024 m       λ = 106º 45’ 15.”77273 W +/- 0.0016 m  (E) 
 Z  =  3,386,457.512 m  +/- 0.0022 m       h =   1,165.523 m               +/- 0.0023 m  (U) 
 
Note that the adjusted X/Y/Z coordinate values changed slightly but that the standard 
deviations – both in the X/Y/Z reference frame and the local components – are quite a bit 
smaller.  Clearly, using the standard deviations for weighting the observations has 
improved the statistics of the adjusted positions. 
 
Also note that the standard deviations are different for each component – both in the 
X/Y/Z reference frame and in the local reference frame.  Error ellipses are derived from 
the local northing and easting standard deviations. 
 
 

Option Three – Weights by the Full Baseline Covariance Matrix 
 
For option 3, the weight matrix is computed from the covariance matrix of each observed 
baseline.  As before, the weight matrix is a 21 x 21 matrix and the weights are computed 
as the inverse of the covariance matrices of the baselines.     
 
A bit more explanation is in order.  In option 1, the weights were all identical – 1’s on the 
diagonal of the weight matrix.  In option 2, we chose the weights to be 1/ variance of 
each baseline component (again just on the diagonal – all off-diagonal elements were 
0’s).  In option 3, the weights are defined in the same manner, but the details are not 
quite so simple because we need to use the covariance information for each baseline.  
In all three options, the definition of the weight matrix is:  
 
  W  =  σ0

2 Σ-1   
 
In all three cases, we chose σ0

2 = 1.00.  If we had picked another value for σ0
2, we could 

have “scaled” the weights so that the largest weight was 1.00 or so that the smallest 
weight was 1.00.  Remember, weights are relative but the magnitude of the numbers is 
determined by the user’s choice of σ0

2.  
 
In option 3, the weight matrix (21 x 21) is the inverse of the (21 x 21) covariance matrix 
and the covariance matrix is built using 7 individual baseline (3 x 3) covariance matrices 
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as shown on the next page.  Note, it is not permissible to just take the reciprocal of each 
variance element as we did in option 2 (because it was a diagonal matrix), but one must 
compute the inverse of the entire Σ matrix as shown below.  Yes, because these were 
treated as independent baselines, the weight matrix will be a diagonal matrix of seven 3 
x 3 sub matrices and the remaining off-diagonal elements are 0’s.  If the baselines are 
not independent, the off-diagonal elements will contain non-zero values to show 
correlation between baselines.  Such correlation occurs when data collected at one 
station is used in processing two (or more) baselines.  That case is not considered here. 
 
Using the same B matrix and f vector as before along with the revised weight matrix (as 
shown on subsequent pages, the third set of answers for the parameters (X/Y/Z 
coordinates for the unknown points) is: 
 
         USPA        USPB  Pseudo        Bromilow
   X -1,555,678.579 m       -1,555,663.613 m     -1,556,206.615 m -1,556,209.750 m       
   Y -5,169,961.396 m       -5,169,976.761 m     -5,169,400.740 m -5,169,286.496 m       
   Z  3,386,700.089 m        3,386,683.419 m      3,387,285.987 m  3,387,457.512 m       
 
Computing the residuals as before but using the updated values of the parameters, the 
values of the residuals and the length of the associated baselines are: 
 
   Residual        Baseline      Length
   ∆X:  0.0128 m 
   ∆Y:  0.0178 m  Crucesair to USPA  16,606 m 
   ∆Z: -0.0101 m 
 
   ∆X:  0.0018 m 
   ∆Y:  0.0002 m  USPA to USPB         27 m 
   ∆Z: -0.0056 m 
 
   ∆X:  0.0002 m 
   ∆Y: -0.0004 m  USPA to Pseudo       968 m 
   ∆Z:  0.0014 m 
 
   ∆X:  0.0014 m 
   ∆Y:  0.0040 m  USPB to Reilly   1,252 m   
   ∆Z: -0.0033 m 
 
   ∆X:  0.0009 m 
   ∆Y:  0.0015 m  Bromilow to Reilly     112 m 
   ∆Z: -0.0010 m 
 



 
The Σ matrix is 21 x 21 and composed of seven 3 x 3 sub matrices – one from each baseline.  Because we choose σ0

2 = 1.00, 
the weight matrix is the inverse of the Σ matrix.  The weight matrix is shown on the following page. 
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   06-1.446E   07-8.978E-   07-5.187E-  0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0    
07-8.978E-   07-8.766E   07-3.937E    0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0    
07-5.187E-   07-3.937E   07-3.368E    0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0    
0      0      0    07-5.007E    07-3.021E-   08-7.253E-  0      0      0      0      0      0      0      0      0      0      0      0      0      0      0    
0      0      0    07-3.021E-   07-5.265E    07-1.317E    0      0      0      0      0      0      0      0      0      0      0      0      0      0      0    
0      0      0    08-7.253E-   07-1.312E   07-1.326E     0      0      0      0      0      0      0      0      0      0      0      0      0      0      0    
0      0      0      0      0      0    07-4.662E     07-4.006E-  07-2.009E-  0      0      0      0      0      0      0      0      0      0      0      0    
0      0      0      0      0      0    07-4.006E-   07-6.870E    07-3.200E    0      0      0      0      0      0      0      0      0      0      0      0    
0      0      0      0      0      0    07-2.009E-   07-3.200E    07-2.763E    0      0      0      0      0      0      0      0      0      0      0      0    
0      0      0      0      0      0      0      0      0    06-1.410E     06-1.881E   07-6.189E-   0      0      0      0      0      0      0      0      0    
0      0      0      0      0      0      0      0      0    06-1.881E-   06-2.796E    07-9.024E    0      0      0      0      0      0      0      0      0    
0      0      0      0      0      0      0      0      0    07-6.189E-   07-9.024E    07-3.650E    0      0      0      0      0      0      0      0      0    
0      0      0      0      0      0      0      0      0      0      0      0   07-3.364E      07-2.222E-  08-5.022E-  0      0      0      0      0      0    
0      0      0      0      0      0      0      0      0      0      0      0   07-2.222E-    07-3.729E    08-8.957E    0      0      0      0      0      0    
0      0      0      0      0      0      0      0      0      0      0      0   08-5.022E-    08-8.957E    08-9.505E    0      0      0      0      0      0    
0      0      0      0      0      0      0      0      0      0      0      0      0      0      0     06-1.872E     06-1.658E-   07-5.669E-  0      0      0    

 0      0      0      0      0      0      0      0      0      0      0      0      0      0      0     06-1.658E-    06-4.653E    06-1.285E    0      0      0    
0      0      0      0      0      0      0      0      0      0      0      0      0      0      0     07-5.669E-    06-1.285E    06-1.412E    0      0      0    
  0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      05-2.388E   05-3.185E-  05-1.061E-

0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0     05-3.185E-    05-4.740E    05-1.546E
 0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0     05-1.061E-    05-1.546E    06-6.321E
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The weight matrix, W, is also 21 x 21 and composed of seven 3 x 3 sub matrices – one from each baseline.  Note that  
with 0’s on the remaining off-diagonal elements, each individual sub matrix in the weight matrix is the inverse of the  
corresponding submatrix in the Σ matrix.   
 
It is commonly known that the statistics for the baseline vectors are often overstated by the various manufacturers.  That  
really is of little consequence because the user can scale the weights at will by picking any desired value for σ0

2.   
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   2,253,380   1,577,349   1,626,106     0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0   
1,577,349   3,506,200   1,670,110-   0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0   
1,626,106   1,670,110-  7,426,129    0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0   

0      0      0    3,055,967   1,776,790    93,324-        0      0      0      0      0      0      0      0      0      0      0      0      0      0      0   
0      0      0    1,776,790   3,560,587   2,565,406      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0   
0      0      0    93,324-     2,565,406-  10,040,559    0      0      0      0      0      0      0      0      0      0      0      0      0      0      0   
0      0      0      0      0      0    4,329,973  2,298,352    486,222        0      0      0      0      0      0      0      0      0      0      0      0   
0      0      0      0      0      0    2,298,352  4,381,420     3,404,340-   0      0      0      0      0      0      0      0      0      0      0      0   
0      0      0      0      0      0    486,222     3,404,340-   7,917,229     0      0      0      0      0      0      0      0      0      0      0      0   
0      0      0      0      0      0      0      0      0    7,004,665  4,350,814    1,120,432      0      0      0      0      0      0      0      0      0   
0      0      0      0      0      0      0      0      0    4,350,814  4,471,172   3,678,202-     0      0      0      0      0      0      0      0      0   
0      0      0      0      0      0      0      0      0    1,120,432   3,678,202-  13,732,790    0      0      0      0      0      0      0      0      0   
0      0      0      0      0      0      0      0      0      0      0      0   4,905,460    2,973,094    209,741-      0      0      0      0      0      0   
0      0      0      0      0      0      0      0      0      0      0      0   2,973,094    5,267,810   3,393,197-    0      0      0      0      0      0   
0      0      0      0      0      0      0      0      0      0      0      0   209,741-     3,393,197-   13,607,521   0      0      0      0      0      0   

0      0      0      0      0      0      0      0      0      0      0      0      0      0      0     787,146      258,103       81,047       0      0      0   
 0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      258,103     371,707       234,682-    0      0      0   

0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      81,047       234,682-     954,092      0      0      0   
  0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      409,559      251,628     72,233     

0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      251,628      258,851      210,579- 
 0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      72,233       210,579-     794,441   

         

Earl F. Burkh



Earl F. Burkholder Page 18 2/1/2006 

 
   ∆X:  0.0000 m 
   ∆Y: -0.0015 m  Pseudo to Reilly     314 m 
   ∆Z:  0.0027 m 
 
   ∆X: -0.0011 m 
   ∆Y: -0.0020 m  Bromilow to Pseudo     206 m 
   ∆Z:  0.0023 m 
 
Using these residuals, the estimated (a posteriori) reference variance is: 
 
 (sigma0 hat) 

2  =   vt W v  /  r  =   115.2052 / 9  =  12.8006 
 
Next, the standard deviation of each X/Y/Z coordinate is obtained from (sigma0 hat) 

2 N-1 
where the variance of each parameter is computed from the diagonal element of N-1.  
This time, N-1 is fully populated and there are no 0’s on the off-diagonals.  Only the 
diagonal elements are used to compute the standard deviations of the parameters. 
 
 

σX  =  √(12.8006 * 1.69E-07)  =  0.0015 m  
        USPA σY  =  √(12.8006 * 6.62E-07)  =  0.0029 m   
      σZ  =  √(12.8006 * 5.32E-07)  =  0.0026 m   
 
   σX  =  √(12.8006 * 2.43E-07)  =  0.0018 m 
        USPB σY  =  √(12.8006 * 1.70E-06)  =  0.0047 m   
      σZ  =  √(12.8006 * 8.55E-07)  =  0.0033 m   
 

σX  =  √(12.8006 * 9.71E-08)  =  0.0011 m 
        Pseudo σY  =  √(12.8006 * 3.52E-07)  =  0.0021 m   
      σZ  =  √(12.8006 * 3.27E-07)  =  0.0020 m   
 
      σX  =  √(12.8006 * 1.62E-07)  =  0.0014 m 
       Bromilow σY  =  √(12.8006 * 4.34E-07)  =  0.0024 m   
      σZ  =  √(12.8006 * 3.65E-07)  =  0.0022 m   
 
 
As before, the X/Y/Z position of each new point is used to compute the latitude and 
longitude of the point.  Then, those geodetic positions are used to rotate the X/Y/Z 
reference frame standard deviations to the local reference frame.  However, this time the 
entire covariance matrix of the computed position is used instead of just the standard 
deviations derived from the diagonal elements. 
 
The covariance matrix of the computed position is also used as the basis for computing 
local and network accuracies of the inverse distance and direction between points and is 
described in a subsequent section.  Both the N-1 matrix and the covariance matrix of the 
computed positions for points USPA, USPB, Pseudo, and Bromilow [(sigma0 hat) 

2 * N-1 ] 
are shown on the following page. 
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N-1 as printed out from the least squares adjustment program is:  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7-3.647E    7-2.820E-   7-1.381E-   8-7.943E     8-7.849E-   8-2.402E-   8-2.987E       8-3.967E-   8-1.296E-    8-7.011E    8-7.339E-  8-2.315E-
7-2.820E-   7-4.339E    7-1.849E     8-5.946E-   7-1.647E     8-5.538E     8-3.494E-     8-5.384E     8-1.778E     8-5.992E-   7-1.559E    8-5.233E  
7-1.381E-   7-1.849E    7-1.626E     9-7.207E-   8-5.477E     8-4.955E     9-9.419E-     8-1.595E     9-7.051E     8-1.119E-   8-5.318E    8-4.530E  

8-7.943E    8-5.946E-  9-7.207E-    7-3.267E    7-2.168E-  8-7.197E-    7-1.107E      7-1.395E-   8-4.598E-    7-2.815E     7-2.012E-  8-6.974E-
8-7.849E-  7-1.647E    8-5.477E      7-2.168E-  7-3.521E    7-1.049E      8-9.757E-    7-1.392E     8-4.519E      7-2.006E-   7-3.312E    7-1.004E  
8-2.402E-   8-5.538E    8-4.955E     8-7.197E-  7-1.049E    8-9.706E      8-3.326E-    8-4.674E     8-1.897E      8-6.898E-   7-1.010E    8-8.910E  

8-2.987E    8-3.494E-   9-9.419E-   7-1.107E     8-9.757E-  8-3.326E-   7-8.549E     6-1.109E-  7-3.649E-    7-2.100E     7-1.918E-   8-5.782E-
8-3.967E-   8-5.384E    8-1.595E     7-1.395E-   7-1.392E    8-4.674E     6-1.109E-   6-1.705E    7-5.443E      7-2.657E-   7-2.747E     8-8.217E  
8-1.296E-   8-1.778E    9-7.051E     8-4.598E-   8-4.519E    8-1.897E     7-3.649E-   7-5.443E    7-2.433E      8-8.636E-   8-8.806E     8-3.401E  

8-7.011E    8-5.992E-   8-1.119E-    7-2.815E    7-2.006E-  8-6.898E-   7-2.100E    7-2.657E-  8-8.636E-    7-5.321E     7-3.920E-   7-1.169E-
8-7.339E-   7-1.559E    8-5.318E      7-2.012E-  7-3.312E    7-1.010E     7-1.918E-  7-2.747E    8-8.806E      7-3.920E-   7-6.620E     7-1.834E  
  8-2.315E-   8-5.233E    8-4.530E      8-6.974E-  7-1.004E    8-8.910E     8-5.782E-  8-8.217E    8-3.401E      7-1.169E-   7-1.834E     7-1.688E  

 

           USPA    USPB      Pseudo       Bromilow  
 
The covariance matrix of the computed points (USPA, USPB, Pseudo, and Bromilow) is  (sigma0 hat) 

2 * N-1 and equals: 
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6-4.668E     6-3.609E-   6-1.768E-   6-1.017E      6-1.005E-   7-3.075E-     7-3.824E     7-5.078E-    7-1.659E-    7-8.975E      7-9.394E-  7-2.964E-
6-3.609E-   6-5.554E     6-.367E     7-7.611E-    6-2.109E     7-7.089E      7-4.472E-    7-6.892E      7-2.276E      7-7.670E-    6-1.995E    7-6.698E  
6-1.768E-   6-2.367E     6-2.081E     8-9.225E-    7-7.011E     7-6.343E      7-1.206E-    7-2.042E      8-9.026E      7-1.432E-    7-6.807E    7-5.799E  

6-1.017E     7-7.611E-   8-9.225E-   6-4.182E      6-2.775E-   7-9.212E-     6-1.416E      6-1.786E-   7-5.886E-    6-3.603E      6-2.576E-  7-8.927E-
6-1.005E-   6-2.109E     7-7.011E     6-2.775E-    6 -4.506E      6-1.343E      6-1.249E-    6-1.782E     7-5.785E      6-2.568E-    6-4.240E    6-1.285E  
7-3.075E-   7-7.089E     7-6.343E     7-9.212E-    6-1.343E      6-1.242E      7-4.258E-    7-5.983E     7-2.428E      7-8.829E-    6-1.293E    6-1.141E  

7-3.824E     7-4.472E-   7-1.206E-    6-1.416E     6-1.249E-   7-4.258E-     5-1.094E      5-1.420E-   6-4.671E-    6-2.689E      6-2.456E-  7-7.402E-
7-5.078E-   7-6.892E      7-2.042E     6-1.786E-   6 -1.782E     7-5.983E       5-1.420E-    5-2.182E     6-6.968E      6-3.401E-    6-3.517E    6-1.052E  
7-1.659E-    7-2.276E     8-9.026E     7-5.886E-   7-5.785E     7-2.428E       6-4.671E-    6-6.968E     6-3.114E      6-1.105E-    6-1.127E    7-4.354E  

7-8.975E     7-7.670E-   7-1.432E-     6-3.603E     6-2.568E-   7-8.829E-    6-2.689E      6-3.401E-  6-1.105E-     6-6.812E     6-5.017E-  6-1.496E-
7-9.394E-   6-1.995E      7-6.807E      6-2.576E-   6-4.240E     6-1.293E      6-2.456E-    6-3.517E    6-1.127E       6-5.017E-   6-8.474E    6-2.347E  
 7-2.964E-   7-6.698E      7-5.799E      7-8.927E-   6-1.285E     6-1.141E      7-7.402E-    6-1.052E    7-4.354E       6-1.496E-   6-2.347E    6-2.161E  

2

 

          USPA    USPB        Pseudo           Bromilow  
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     Geocentric & ECEF sigma  Geodetic & local sigma  
 
Station USPA: 
 
 X  =   -1,555,678.579 m  +/- 0.0015 m       φ =   32º  16’ 23.”00019 N  +/- 0.0027 m  (N)  
 Y  = -5,169,961.396 m  +/- 0.0029 m       λ = 106º 44’ 48.”90817 W +/- 0.0017 m  (E) 
 Z  =  3,386,700.089 m  +/- 0.0026 m       h =   1,178.015 m               +/- 0.0028 m  (U) 
 
Station USPB: 
 
 X  =   -1,555,663.613 m  +/- 0.0018 m       φ =   32º  16’ 22.”36244 N  +/- 0.0037 m  (N)  
 Y  = -5,169,976.761 m  +/- 0.0047 m       λ = 106º 44’ 48.”19151 W +/- 0.0022 m  (E) 
 Z  =  3,386,683.419 m  +/- 0.0033 m       h =   1,177.908 m               +/- 0.0042 m  (U) 
 
Station Pseudo: 
 
 X  =   -1,556,206.615 m  +/- 0.0011 m       φ =   32º  16’ 45.”74650 N  +/- 0.0020 m  (N)  
 Y  = -5,169,400.740 m  +/- 0.0021 m       λ = 106º 45’ 14.”39975 W +/- 0.0012 m  (E) 
 Z  =  3,387,285.987 m  +/- 0.0020 m       h =   1,165.641 m               +/- 0.0020 m  (U) 
 
Station Bromilow: 
 
 X  =   -1,556,209.750 m  +/- 0.0014 m       φ =   32º  16’ 52.”33407 N  +/- 0.0022 m  (N)  
 Y  = -5,169,286.496 m  +/- 0.0024 m       λ = 106º 45’ 15.”77273 W +/- 0.0015 m  (E) 
 Z  =  3,387,457.512 m  +/- 0.0022 m       h =   1,165.523 m               +/- 0.0023 m  (U) 
 
Note that the adjusted X/Y/Z coordinate values changed slightly but that the standard deviations, 
both in the X/Y/Z reference frame and the local components, are larger – not smaller as might have 
been expected.  In order to understand that counter-intuitive result, we need to look at the 
difference between network accuracy and local accuracy.  
 
 

Network Accuracy and Local Accuracy 
 
Datum accuracy, network accuracy, and local accuracy are defined mathematically in the article, 
“Spatial Data Accuracy as Defined by the GSDM” Journal of Surveying and Land Information 
Systems, Vol. 59, No. 1, March, 1999, pp 26-30.  Datum accuracy is a statement of how well the 
position of a single point is known with respect to the published datum.  Network accuracy can be 
intuitively understood to be a statement of accuracy between points based upon how well the 
positions are known with respect to the control held by the user.  It is presumed the points are 
independent – that is, there is no correlation of one with respect to the other as might be 
determined by a direct tie between them.  Alternatively, local accuracy can be understood to be a 
statement of accuracy between points based upon a direct measurement between the points.  The 
following paragraphs describe the results of computing both network accuracy and network 
accuracy from point USPA to point Pseudo.  An Excel spreadsheet (the file is called “3-D inverse 
with statistics.xls”) was used to generate the answers and can be obtained gratis from the author at 
globalcogo@zianet.com. 
 
When using the Excel spreadsheet, the user keys information into the spreadsheet and answers 
appear instantaneously.  Input includes the names of the two stations, the geocentric X/Y/Z 
coordinates of the two points, and the standard deviation (really covariance) information.  When 
computing the inverse, the direction and distance will remain the same but the standard deviations 
will be different depending upon the covariance information input by the user.  Choices for entering 
covariance information are: 
 

mailto:globalcogo@zianet.com


Earl F. Burkholder Page 21 2/1/2006 

1. All standard deviations are entered as zeros.  That means there is no standard deviation 
available and the X/Y/Z coordinate data are used as being “fixed.”  The spreadsheet will still 
compute the local tangent plane direction and distance between points, but there will be no 
standard deviations associated with the inverse direction and distance. 

 
2. The user can enter the standard deviations of the geocentric X/Y/Z coordinates as 

variances (standard deviations squared).  These covariance data are entered on the 
diagaonal of the geocentric covariance matrix for each point.  The spreadsheet computes 
the local reference frame covariance matrix (showing the local component e/n/u standard 
deviations of each point), the inverse direction and distance standpoint to forepoint, and the 
standard deviation of the direction and the distance.  Local and network accuracy will be 
identical because no correlation data were entered. 

 
3. The user can enter the full covariance matrix for each point.  This is the “best” inverse one 

can get without also providing correlation information.  This answer is “network” accuracy 
and presumes the coordinates of the two points are statistically independent of one 
another.  Local accuracy will compute as being identical to network accuracy. 

 
4. Or, the user may enter the full covariance matrix at each point as well as the correlation 

matrices between points.  The correlation of the Forepoint with respect to the Standpoint is 
the transpose of the correlation of the Standpoint with respect to the Forepoint.  It is 
redundant, but both correlation matrices need to be entered (the asute Excel user will 
quickly rekey the appropriate cells so that correlation data needs to be entered only once). 

 
 
Values in the comparison below were computed using the file 3-D inverse with statistics.xls.    
 
              Network Local 
 Inverse - USPA to Pseudo      Accuracy  Accuracy 
 
  1. No standard deviations Distance = 967.615 m      +/- 0.0000 m 0.0000 m 
     Direction =  316º 24’ 28.”2      +/- 0.00 sec. 0.00 sec. 
 
  2.  Standard deviations of       Distance =  967.615 m      +/- 0.0031 m 0.0031 m 
 X/Y/Z values only  Direction =  316º 24’ 28.”2      +/- 0.53 sec 0.53 sec. 
 
3. Full covariance matrix  Distance = 967.615 m      +/- 0.0018 m 0.0018 m 

of each X/Y/Z point   Direction = 316º 24’ 28.”2      +/- 0.40 sec. 0.40 sec. 
 
  4.   Full covariance matrix      Distance = 967.615 m      +/- 0.0018 m 0.0011 m 
 and correlation submatrix Direction = 316º 24’ 28.”2      +/- 0.40 sec. 0.24 sec. 
  
 


