The Global Spatial Data Model

A. global spatial data model (GSDM) has
been designed which makes it easy for
surveyors to combine GPS data with ter-
restrial survey data and to perform “geo-
detic type” computations using rules of
solid geometry. Briefly, the GSDM is a
collection of procedures by which 3D
plane surveying measurements (all Hls
must be measured) are converted into geo-
centric delta X/Y/Z components, and 3D
coordinate computations are performed
using rules of solid geometry in the geo-
centric X/Y/Z environment. From there,
the user enjoys total flexibility and can
continue to work with local plane survey-
ing coordinate differences or convert the
X/Y/Z values to conventional geodetic or

. state plane coordinates. The X/Y/Z coor-
dinates are the underlying stored values
which can be exchanged between data
bases, users, or projects.

The Key Is Obtaining X/Y/Z Values
The key to using the GSDM is obtain-
ing X/Y/Z values for each point. The Na-

tional Geodetic Survey (NGS) publishes

X/Y/Z values for all high-accuracy refer-
ence network (HARN) stations and delta
X/Y/Z values are used to traverse from
one point to another. GPS vectors are al-
ready defined by their delta X/Y/Z com-
ponents and plane surveying delta e/n/u
components are converted to delta X/Y/
Z coordinates using simple equations. Ev-
erything else is derived from the stored
X/Y/Z positions using existing procedures
and standard equations. Those equations
are included in the Technical Papers of
the April 1994 ACSM Annual Meeting in
Reno, Nevada, in my paper, “Exploiting
the Connection Between Plane Surveying
and GPS Vectors.” The equations can also
be found in geodesy books or obtained
from your GPS vendor. Prototype software
for performing 3D coordinate geometry
computations is called BURKORD™ and
is available from me. Finally, I have de-
veloped several one-day seminars to
present the GSDM concept and plan to
offer the seminars at various locations in
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the coming months. The first day covers
basic geodesy while the second day fo-
cuses on integrating GPS and terrestrial
survey data using the GSDM. For those
with Internet access, the seminars are de-
scribed in more detail under “seminars”
at bttp://www.lsrp.com

Adapting To Changes In Equipment
The generation of surveyors whose
practice covers any part of the past 30
years have many stories to tell about
adapting to change. For example:
e With introduction of desktop comput-
ers in the 1960s (e.g. the Olivetti Pro-
gramma 101), it was no longer necessary
to look up trig functions in the tables or
to use logarithms. That machine would
compute a trig function in about 10 sec-
onds.
¢ Affordable electronic distance measur-
ing (EDM) instruments have greatly ex-
panded the capability and productivity of
many surveying businesses. Sadly, plumb
bob taping has become a lost art.
e The HP-35 calculator was introduced
about 1972. A hand-held electronic cal-
culator, it had a square root key and ca-

pacity for 10 significant digits. Program- -

mable calculators with ever-increasing
storage capacity soon followed.

e Within the past 10 years, the electronic
total station theodolite, coupled with a
data collector, has become the standard
for conventional surveying and, with the
addition of robotics, the modern survey

~crew can be.a one-person operation.

e GPS was invented during the 1970s, en-

joyed continuing development during the
- 1980s, and initial operational capability

was announced in December 1993. Al-
though designed for navigation by the U.S.
military, civilian use of GPS has blossomed
and surveyors around the world have
come to embrace GPS.

Adapting to Change In Concepts

The evolution of equipment is impres-
sive, but what about more fundamental
concepts? Consider:
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e Coordinate geometry remains pretty
much the same. René Descartes is cred-
ited with bringing order to the study of
analytical geometry with publication of his
discourse on geometry in 1637. Although
curvilinear latitude and longitude coordi-
nates are used by geographers, cartogra-
phers and geodesists, the rectangular
cartesian coordinate system is still used
extensively all over the world.

e When Gerardus Mercator designed his
map projection in the middle 1500s, his
goal was to create.a map that could be
used to sail a constant bearing from‘one
port to another. Mercator’s map, an array
of parallels and meridians on the earth,
was later formalized mathematically and
became known as a conformal projection.
Several kinds of conformal projections
exist today and are used extensively in
many part of the world, but they are strictly
2D and provide no mathematical basis for
elevation as the third dimension.

e The state plane coordinate systems were
designed in the 1930s to permit survey-
ors and engineers to use plane surveying
methods on surveys tied to geodetic tri-
angulation stations of the North Ameri-

can Datum of 1927 (NAD27). Although

surveyors have used the systems for years,
much of their current popularity is due to
the emergence of geographic information
systems and GPS data.

 Electronic storage of digital spatial data
came into being with the mainframe com-
puter. Early discussions on the challenges
of efficient use of digital spatial data were
held in the context of Modernization of
Land Data Systems (MOLDS) and the con-
cepts evolved into the present-day LISs
and GISs.

® Geodetic datums are another concept
with which surveyors have become more
familiar. Reasons include the increasing
use of GIS for storing spatial data, the
readjustment of the NAD27, and the use
of GPS receivers that collect data rela-
tive to the World Geodetic System of
1984 (WGS84). One could also suggest
that the HARNSs are a new datum to be
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learned, even though the National Geo-
detic Survey (NGS) insists the HARNs
are to be viewed as a refinement to the
North American Datum of 1983 (NADS83)
instead of being treated as a new da-
tum. But, from the surveyors’s perspec-
tive, use of HARN-based NAD83 coor-
dinates is the same as working with a
different datum, because there is a new
(different) set of coordinates for the
same monument. ,
¢ In order to determine elevations us-
ing GPS, the surveyor-needs to deal with
the concept of geoid heights. A 1967
geoid 'map of North America, published
by the U.S. Army Map Service, shows
one-meter geoid contours. Since then,
geoid modeling has continued as an area
of geodetic research, and programs such
as GEOID93 and GEOID96 are available
from the NGS for computing geoid
heights. Accuracy claims for GEOID96
are approximately 3 cm (one sigma) in
the absolute mode and 1 to 2 ppm for
relative geoid height differences. Com-
bined with appropriate GPS observa-
tions, it is possible to determine eleva-
tions with a relative accuracy approach-
ing the guidelines established for con-
ventional first-order leveling.

e When using map projection (state

plane) coordinates, an inverse between
two points yields a grid distance that
may be different from the horizontal
ground distance by an intolerable
amount. For example, at an elevation of
2,000 feet near the center of a zone hav-
ing a maximum scale. distortion of
1:10,000, the difference between grid
and ground distance is more than one
foot per mile. Many state highway de-
partments address the grid/ground dis-
tance issue by using “project datum”
coordinate systems, which provide bet-
ter agreement between grid and ground
distances. In other cases, project datum

coordinate systems are implemented on

a county-wide basis.

The Need For Change

Is change a juggernaut not to be chal—
lenged? What are the consequences of dis-
honoring a sacred cow? Is pressure to con-
form justifiable or defensible as a basis
for making decisions? Are new ways of
handling spatial data necessarily better
than old ones? Or are we guilty, as in the
biblical example, of putting new wine into
old wineskins when we use existing two-
dimensional models for handling 3D data?
These were some of the questions con-

sidered during preparation of a report en-
titled Definition of a Three-Dimensional
Spatial Data Model for Southeastern Wis-
consin (available from the SE Wisconsin
Regional Planning Commission,
Waukesha, Wisconsin). For surveyors, the
most significant benefit identified in that
report is:

By using an appropriate model, 3-D
coordinate geometry computations can
be accomplished at any level of preci-
sion using existing plane surveying pro-
cedures along with a bit of geodesy. The
added effort for surveyors (other than
becoming familiar with features of the
model) is remembering to measure the
beight-of-instrument for each instru-
ment/reflector setup!

The appropriate model is the GSDM,
which can be easily used by surveyors.
As documented in the Wisconsin report,
the model performs flawlessly using 3D
control of existing NAD83 HARN stations.
While the GSDM defines a simple, stan-
dard computational environment, it does
not specify how larger issues, such as earth
tides, subsidence/uplift and continental
drift, should be handled. It is left for the
NGS to address those issues in connec-
tion with-a possible national read]ustment
of the HARN networks.

The GSDM:

e Is based upon the earth-centered, earth<
fixed (ECEF) geocentric coordinate sys-
tem defined by the Department of De-
fense for GPS use. The position of each
point is defined by its X/Y/Z coordinates.
Equivalent positions in other coordinate
systems are derived using known relation-
ships.

¢ Is designed to be used by non-geod-
esists. However, since the GSDM enjoys
full mathematical rigor, there is no inher-
ent reason why geodesists or other scien-
tifically minded persons should not use
it. :
¢ Uses one set of solid geometry equa-
tions world-wide. There are no zones,
projection constants, or tables needed
to perform spatial data calculations any-
where within the “birdcage” of GPS sat-
ellites. While an understanding of coor-
dinate geometry is adequate for using
the GSDM, knowing some basic geod-
esy is helpful.

¢ Is compatible with, and makes effi-
cient use of, modern digital electronic
data collectioh, storage and manipula-
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tion technologies. The same model ac-
commodates conventional survey data,
GPS data and aerial mapping data with
equal ease. )

* Does not distort the physical measure-
ment of distance, as does the map projec-
tion (state plane) model. Inverse distance
in the GSDM is the same as horizontal
ground distance. For those not wishing to
give up state plane coordinates, be as-
sured they remain as valid as ever; a list-
ing of state plane coordinates can be
readily obtained from stored GSDM points.
» Acknowledges that surveyors work pri-
marily with local coordinate differences.
Unless there is a change in local coordi-
nate differences (due to earthquake or
movement of a'monument), the impact
of future datum changes can be npggligible
for the local user.

e Gives the true azimuth from a stand-
point to any forepoint with respect to the
meridian through the standpoint. In the
real world, meridians are not parallel,
which means the forward and back azi-
muths of a common line are different. The
GSDM provides correct forward and back
azimuths for any given line.

e Treats elevation as a derived quantity,
subject to the uncertainties of ellipsoid
heights, geoid heights and vertical datum
definition. As geoid modeling results be-
come imore accurate, it is possible to com-
pute elevations easily with correspond-
ing reliability.

Little Or No New Science Involved

The GSDM involves little or no new
science but is a systematic arrangement
of existing concepts. The geometrical re-
lationships constitute what is called the
functional component of the model. The
GSDM also includes a stochastic compo-
nent that defines the use of error propa-
gation and positional tolerance for spatial
data. The next two articles in this series
will list the equations used in functional
portion of the GSDM, will include ex-
amples of 3D coordinate computations,
and will describe stochastic features of the
GSDM and show how they can be used
to compute the standard deviations of
coordinates, distances, azimuths and other
derived quantities such as area and vol-
umes. u '

EarL BURKHOLDER is a former professor of
surveying at Oregon’s Institute of Technol-
ogy, and provides consulting services
through bis company, Global COGO, Inc.
of Circleville, Objo. ’
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Using the Global Spatial Data Model (GSDM)
in Plane Surveying

Earl F. Burkholder, LS, PE

Editor’s Note: This is the second in a series of three articles on
the global spatial data model (GSDM). The articles are The Glo-
bal Spatial Data Model—A Tool Designed for Surveyors, Using
the Global Spatial Data Model (GSDM) in Plane Surveying and
Positional Tolerance Made Easier with the GSDM.

The global spatial data model (GSDM) is an arrangement of
equations that facilitates 3D coordinate geometry
computations.This article describes using those equations in
two broad categories—traversing and inversing in the con-
text of the GSDM.

As shown at the top of Figure 1, the 3D position of a point is
defined by its geocentric X/Y/Z coordinates. From there, geocen-
tric coordinates can be converted to geodetic latitude/longitude/
height or, more conveniently for surveyors, geocentric coordi-
nate differences can be converted to local coordinate
differences.This geocentric connection preserves the “big pic-
ture" advantages of working in a standard, universal system while
providing users the luxury of working with local rectangular com-
ponents. Figure 2 shows the rectangular X/Y/Z geocentric coor-
dinate system superimposed upon the more conventional geo-
detic latitude/longitude/height coordinate system, and Figure 3
shows a local coordinate system whose origin is any “standpoint”
selected by the user.

Equations and Computations

Equations for moving mathematically from one box to an-
other in Figure 1 can be found in geodesy text books or obtained
from your GPS vendor. Equations are also listed in the Technical
Papers of the 1994 American Congress on Surveying and Map-
ping (ACSM) Convention in an article I wrote entitled, Exploiting
the Connection Between Plane Surveying and GPS Vectors. As stated
there and below, traversing and inversing in the geocentric coor-
dinate system using rules of solid geometry is quite straight-for-
ward.

¢ A 3-dimensional traverse is accomplished by:

X, =X +AX ¢))
Y, =Y, +AY @
7, =7 +AZ 3

AX = X, - X, @
AY = Y,-Y, ©)
AZ=17,-2 ©®

X/Y/Z coordinates are an efficient way to store spatial infor-
mation in a database, and use of coordinate differences enhances
computational integrity. But human perception of spatial data
dictates continued use of local horizontal and vertical spatial data
components. Therefore, a conversion between local and geocen-
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The BURKORD™ 3-D Diagram

Geocentric Coordinates: X, Y, Z

- True 3-D, Computations follow
rules of solid geometry

- Linear adjustment model
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Figure 1. The 3D Diagram.

tric rectangular components is needed. The conversions based
upon the latitude/longitude position of Point 1 are:

1. Local coordinate differences (used in 3D plane surveying)
are obtained from geocentric components using:

Ac=- AXsin A + AY cos A, A
An = - AX sind, cos A, - AY sind, sin A\ + AZ cosd,  (8)
Au = AX cosd, cos A + AY cosd, sin N, + AZ sind, (9
2. And, geocentric components are computed from 3D local
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plane surveying components using:

AX = -Ae sinA, -An sind, cos A, + Au cosd, cosA, Qo '

AY = Ae cosh, - An sink, sind, + Au cosé, sink, ay
AZ = An cosd, + Au sind, a2
Traverse: Using total station measurements (mark-to-mark),

local rectangular components from Point 1 (standpoint) to Point 2
(forepoint) are computed as:

Ae = slope distance * sin (zenith) * sin (azimuth) Qa3
An = slope distance * sin (zenith) * cos (azimuth) (14)
Au = slope distance * cos (zenith) (15

These equations are readily recognized as 3D plane surveying
computations for latitude, departure and vertical differences. (Note
that without a curvature and refraction correction, the Au compo-
nent is not an elevation difference. Equation 15 gives the perpen-
dicular distance from the forepoint to the tangent plane through the
standpoint which is the correct quantity to use in3D traversing).

Plane surveying measurements are reduced to local rectangu-
lar components using equations 13-15. Those local components
are converted to geocentric components using equations 10-12.
Finally, X/Y/Z positions of Point 2 are computed using equations
1-3. Traversing with GPS vectors is done directly with equations
1-3 because GPS base lines are already defined by their geoten-
tric AX/AY/AZ components.

Inverse: With the 3D position of each point defined by its
geocentric X/Y/Z coordinates, local rectangular components be-
tween points are readily obtained using equations 4-6 to obtain
geocentric AX/AY/AZ coordinate differences. Then, equations 7-
9 are used to compute local plane surveying components of Ae/
An/Au. From there,

horizontal distance (HD) = J(Ae? + An?) 16
3D azimuth, standpoint to forepoint = arc tan (Ae/An) (17)

elevation difference = Au+curvature & refraction correction (18)
where c&r (in meters) = 0.0675 (HD/1,000)?

Notes about the inverse quantities:

1. The horizontal distance is a local tangent plane distance and
is the same horizontal distance plane surveyors have been using
for generations.

2. The 3D azimuth is often taken to be the same as the geo-
detic azimuth between points. And, because the meridians through
the forepoint and standpoint are not parallel (unless they are on
the same meridian), the azimuth from Point 1 to Point 2 differs
from the reverse azimuth by 180° plus the convergence between
points.

3. The elevation difference in equation 18 does not include
geoid height differences and relies upon correctness of the curva-
ture and refraction approximation. The approximation is gener-
ally adequate for distances less than 1000 meters. Precise eleva-
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tion differences can be obtained (see left side of Figure 1) using
ellipsoid heights and properly modeled geoid height differences.

Summary

These procedures bridge the gap between computer databases
and surveyors’ use of spatial data, accommodate either conven-
tional survey data or GPS data, are equally applicable world-wide,
are based upon rules of solid geometry (some geodesy is needed
to understand equations 19 and 20), preserve true 3D geometrical
integrity of spatial data, do not distort horizontal distance (as does
the conformal mapping model), combine horizontal and vertical
data into a single 3D database, allow computation of elevation
differences using curvature and refraction corrections and direct
computation of elevations using geoid modeling (they are differ-
ent), and are compatible with error propagation techniques used
in computing positional tolerances.

EARL BURKHOLDER i5.4 former professor of surveying at Oregon’s In-
stitute of Technology, and provides consulting services through bis
company, Global COGO, Inc. of Circleville, Obio.

See Example on page 42.
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Example

are in meters).

Station X: -2,490,977.0490
K-785 Y: -4,019,738.1880

Z: 4,267,460.3830
K-785 Slope dist: 595.3002

to . Pub Zenith dir: 86° 09' 50.2"
Azimuth: 34° 11°* 06.9"
Station X: -2,490,534.8631
Pub Y: -4,019,658.1959
Z: 4,267,850.8381
Traverse - GPS:
K-785 to AX: 122.5471
"Trimble AY: 56.9460
Az: 131.0224
Station X: -2,490,854.5019
Trimble Y: -4,019,681.2420

Z: 4,267,591.4054

K-785 to Ax: 122.5471
Trimble AY: 56.9460
s Az: 131.0224

Horizontal distance
Azimuth
Difference in Elev.

Trrimble AX: 319.6388
..to Pub Ay: 23.0461
: AZ: 259.4327

Horizontal distance
) Azimuth
Difference in Elev.

Pub to AX: -442.1859
K-785" Ay: -79.9921
AZ: -390.4551

Given: The following points are all part of the GPS network located at the Oregon Institute of Technology (all length units

Inverses (Computed from X/Y¥/Z values listed above):

Lat: 42° 15' 16.99289"
Long: -121° 47' 09.35425"

Ae: 333.7322 AX: 442.1859
An: 491.3440 - Ay: 79.9921
Au: 39.8267 AZ: 390.4551

Lat: 42° 15' 32.91354"
Long: -121° 46' 54.79687"

Lat: 42° 15' 22.59642"

Long: -121° 47' 06.11902"

Ae: 74.1716
An: 172.9331

Au: 4.4968 c&r: 0.0024
= 188.1682
= 23° 12* 52.8"
= 4.4992

Ae: 259.5635

An: 318.4072

Au:  35.3415 c&r: 0.0114
= 410.7997
= 39° 11' 12.1"
= 35.3529

Ae: -333,7534

An: -491.3251

Au: -39.8820 c&r: 0.0238

Horizontal distance = 593.9627

Azimuth = 214° 11* 16.7"

Difference in Elev. = -39.8582
Notes with regard to the example:

1. Geometrical integrity of the example is verified by the zero summa- . Z eNsind |
tanc= 1 20)

tion of AX/AY/AZ components around the loop. However, due to me- I 2\ 7z ’
ridians not being parallel and due to Earth’s curvature, the traditional Y

latitudes, departures and elevation differences do not add up exactly to
zero.

2. If the elevation of one station is known (either NGVD 29 or NAVD
88). the elevation differences obtained by applying the c&r corrections
can be used to compute the elevation of other stations.

3. Computation of geodetic longitude from geocentric X/Y/Z coordi-
nates is straight-forward (remember west longitude is negative):

A = arctun (%) ao

4. Computation of latitude and height from geocentric coordinates in-
volves a rather lengthy computation (see 1994 ACSM paper) or iteration of:
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h-XHY )

N= —/——— (20)

Where ¢ = geodetic latitude, X/Y/Z are the geocentric coordinates, N =
ellipsoid normal, h = ellipsoid height, a = ellipsoid semi-major axis, and e*
= ellipsoid eccentricity squared. Assume ¢ = 0 for first iteration and con-
tinue using up-dated values of ¢ until the change of latitude from one
computation to the next is inconsequential. =
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Positional Tolerance Made Easier

The global spatial data model (GSDM)
was described in the first article of this
three-part series and 3D coordinate geom-
etry equations for using the GSDM were
in the second article. Now I will describe
how positional tolerance and standard de-
viations can be computed in the context
of the GSDM. A comprehensive descrip-
tion is not possible in this limited space,
but we can explore the overall concept,
describe the pieces, examine how posi-
tional tolerance computations can be made
and identify sources of additional infor-
mation. For interested readers, free proto-
type 3D coordinate geometry and error
propagation software can be downloaded
from www.lsrp.com/burkind.btmi

First let me review some of the issues
related to positional tolerance computa-
tions:

* Equations for performing 3D coordi-
nate geometry were included in the sec-
ond article of this series and are called the
functional model portion of the GSDM.

¢ Equations for performing error propa-
gation and standard deviation (positional
tc’ ance) computations are called the sto-
chastic model portion of the GSDM. The
words “functional” and “stochastic” have
specific meanings for mathematicians but
they are used here in a simpler context to
distinguish between coordinate geometry
(COGO) computations and positional tol-
erance (standard deviation) computations.

* Equations for positional tolerance
computations can be lengthy and complex
unless stated in matrix form. Even so, the
underlying procedures can be complicated
and intimidating. The goal here is to
present valuable, correct information as
simply as possible by describing the es-
sential pieces and by providing access to
software that can be used to compute po-
sitional tolerances and standard deviations.

* For those interested in greater detail,
the theory of etror propagation is covered
in Chapter 4 of Professor Edward Mikhail’s
book Observations and Least Squares and
other surveying textbooks on adjustments.
Details for applying the stochastic model
to the GSDM are described in Appendix

48

With the GSDM

Earl F. Burkholder, LS, PE

B-2 of “Definition of a Three-Dimensional
Spatial Data Model for Southeastern Wis-
consin” which is available from the South-
eastern Wisconsin Regional Planning Com-
mission, Waukesha, Wisconsin, 53187, tele-
phone 414/547-6721.

e The GSDM stores both functional
model data (geocentric X/Y/Z coordinates)
and stochastic model information (the co-
variance matrix) for each point. This ar-
ticle describes use of the stochastic model
for making standard deviation (positional
tolerance) computations. The previous ar-
ticle described using the functional model
for making 3D coordinate geometry com-
putations.

® The GSDM really includes two co-
variance matrices for each point. Values
for the geocentric covariance matrix are
stored in the data base along with the
X/Y/Z coordinates for each point. Com-
puterized manipulation of digital spa-
tial data is more efficient in the geocen-
tric rectangular coordinate environment,
but the local covariance values are also
needed because humans perceive and
intuitively relate to standard deviations
in the horizontal/vertical modes. Local
standard deviations are computed as
needed using the stored X/Y/Z values
and the geocentric covariance matrix. In
symbols, the two matrices are:

/
Geocentric Covariance Matrix

xnz

2
o o o
%%z %yz 92

Local Covariance Matrix
o o in el
Edm = lo,, 0”2 Ot
%eiu Onju 0}

Notes about the covariance matrices:
* The covariance matrices are symmet-
ric which means there will be no more
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than 6 unique elements in each one.

¢ In either case, a standard deviation is
computed as the square root of the diago-
nal element in each matrix. In one case
the standard deviations are perpendicular/
parallel to the geocentric X/Y/Z coordi-
nate system. In the other case, the stan-
dard deviations are perpendicular/paral-
lel to the local e/n/u coordinate system.

¢ Correlation between coordinates is
tracked by the off-diagonal elements. The
coordinates are independent if, and only
if, the off-diagonal elements are zero. Si-
multaneous independence in both systems
is possible, but independence in the local
system does not imply independence in
the geocentric system and vice versa. (Pro-
grammers need this information more than
the rest of us do.)

¢ The two covariance matrices are
mathematically related to each other by a
rotation matrix for the latitude/longitude
position of a point as computed from its
X/Y/Z coordinates (see previous article).
The rotation matrix is:

-sind -sind cosA cos¢ cosk
R = |cosA -sind sinA cos¢ sina
0 cos sing

and the matrix relationship between the
covariance matrices is:

Zyyz = RZ,, RT
Ee/n/u = RT EX/Y/Z R
Notes about the rotation matrix:

Geodetic longitude in the rotation matrix
is counted 0° to 360° east from the Greenwich
Meridian. West longitude is a negative value.

Latitude is counted positive north of the
equator and negative south of the equator.

e Storing the 3D geocentric covariance
matrix for each point means hogizontal and
vertical survey data can be stored in the same
3D data base. The GSDM preserves the 3D
geometrical integrity of the data and compe-
tently describes spatial data accuracy compo-
nent by component.

e Standard deviations of individual com-
ponents are the basis of error ellipse compu-
tations/plots.



Using the GSDM for Positional Tolerance Computations

Procedures for using the GSDM are listed for two categories: putting
survey data, including standard deviations, into the data base, and using
information stored in the data base to compute quantities such as bear-
ings and distances. More important, standard deviations of local compo-
nents, coordinate differences, azimuths and distances are routinely printed
with each inverse. Existing prototype software called BURKORD™ can
be used in both cases.

Following are the procedures for storing coordinates and standard |

deviations:

e The X/Y/Z coordinates or latitude/longitude/height values are
entered to define the location of a point. The geocentric covariance
matrix for the defined point is established by one of the following
methods: ‘

¢ No standard deviations are available or used. The default co-
variance values are zero and the point is used as a “fixed” point.
 The user inputs standard deviations component by compo-
nent either in the local reference frame or in the geocentric reference
frame.
" The user inputs the entire point covariance matrix in either
coordinate system.

e The X/Y/Z coordinates are computed as the result of a 3D traverse
or network adjustment, using either local coordinate differences (total
station survey data), geocentric coordinate differences (GPS vectors) or
geodetic coordinate differences (such as traversing a parallel of lati-
tude). Regardless of the computational mode used, the GSDM permits
a user to input no standard deviations, standard deviations of the obser-
vations or, in the case of GPS data, the entire covariance matrix of the
GPS vector. The covariance matrix of each new point is computed
using the covariance matrix of the control point(s), the stochastic infor-
mation provided by the user and formal error propagation procedures.

Positional Tolerances From GSDM Information

A GSDM database could be considered a digital terrain model (DTM),
in that the location of each point in the database is defined by 3D
coordinates. A GSDM database could be judged better than a DTM, in
that it uses rectangular ECEF coordinates and stores the 3D spatial accu-
racy of each point in the geocentric covariance matrix. Solid geometry
and error propagation equations for using GSDM data base information
are universal world-wide. ‘

Specific procedures used for computing the standard deviation of
the direction and distance between two points stored in 2 GSDM data
base are: .

e The user selects two points stored in the data base. Points in a
BURKORD™ data base are identified by point numbers.

 Geocentric coordinate differences and local coordinate differences
between the points are computed using the equations given in the
second article of this series. The inverse direction and distance are found
using the e and n components.

o The covariance matrices of the geocentric coordinate differences
and the local coordinate differences are found using error propagation
equations which are listed in the Wisconsin 3D report.

e Standard deviations of the horizontal distance and the azimuth
between selected points are computed from the covariance matrix of
the local coordinate differences.

o Although the following information may not all be needed, the
output of each inverse includes:

* Geocentric coordinates of each point

» Geodetic coordinates for each point

* Local east/north/up standard deviations at each point

e Geocentric coordinate differences and their standard deviations

e Local coordinate differences and their standard deviations

* Local tangent plane direction and distance between points along
with the standard deviation of each.

Elevations Qualified
My goal is to provide correct information that is also complete.

" Given the limited space, completeness is sacrificed before correct-

ness. Even so, I would be remiss to end this discussion without
mentioning elevation standard deviations. Standard deviations of
the local “up” components as defined by the GSDM are correct, but
the “up” components differ slightly from elevation differences as
described in equation (18) of the second article in this series. The
uncertainty of the curvature and refraction correction needs to be
combined with the “up” component uncertainty to obtain a stan-
dard deviation of the elevation difference.

Although the curvature and refraction method may be sufficient
for localized use, a better method of obtaining elevations from the
GSDM requires knowledge of geoid heights and/or geoid height
differences. The GSDM defines elevation as the difference of ellip-
soid height minus geoid height (see letter “E” in Figure 1 of the
second article irr the series). The challenge for users is to obtain
ellipsoid heights and geoid heights with small standard deviations.
GPS technology has made it possible to determine ellipsoid heights
with small standard deviations and, as evidenced by publication of
GEOID93 and GEOID9%6, enormous progress has been made in
modeling geoid heights. The GSDM.is valid and can be used even
if the available data has large standard deviations. The quality of
answers obtained using the GSDM depend upon the quality of data
input. Ultimate benefits for the user community will be realized as
better geoid models become available. m

Earw F. BURKHOLDER is a former professor of Surveying at Oregon’s
Institute of Technology, a past editor of the ASCE Journal of Sur-
veying Engineering, and provides consulting services through bis
company, Global COGO, Inc. of Circleville, Obio. He can be
reached at eburk@delphi.com
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