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While necessity may be the mother of invention, 6 

Laziness is the father of invention. unknown 7 
 8 
Abstract 9 
 10 
The spatial data domain includes location as defined by the geometry of points, lines, planes, and sur-11 
faces. The term “spatial data” is generic. Geospatial data are those referenced to the Earth. Given the 12 
hierarchy of reference systems, spatial data are taken to be a sub-set of geospatial data because spatial 13 
data do not specifically include Earth’s curvature. The mathematical ellipsoid is the underlying model for 14 
geometrical geodesy and geospatial data referencing. Map projections are used to provide a connection 15 
between geometrical geodesy and a flat-Earth perspective preferred for many applications. Consequently, 16 
ingenious map projections have been developed for accommodating both integrity and flat-Earth 17 
convenience. The drawback, mitigated by software tools for handling complex equations, is that 18 
horizontal and vertical are referenced to disparate origins. With advent of the digital revolution, spatial 19 
data are characterized as digital and 3-D. The 3-D global spatial data model (GSDM) uses a single origin for 20 
geospatial data and embodies rules of solid geometry within the rectangular Earth-centered Earth-fixed 21 
(ECEF) reference system for manipulating geospatial data. In using a 3-D model for 3-D geospatial data, 22 
geometrical integrity is preserved and, by comparison, 3-D equations for manipulating spatial data are 23 
less complicated than those used in traditional methods.   24 
 25 
Keywords:  Spatial data, geospatial data, Earth-centered Earth-fixed (ECEF), global spatial data model 26 

(GSDM), map projection, conformal, and spatial data accuracy  27 
 28 
Stipulation 29 
 30 
To avoid being misinterpreted, laziness is taken to be the motivation to achieve better results with less 31 
effort. Slothfulness is excluded, and no gender implication is intended. Throughout history, many talented 32 
persons have devised methods to achieve some stated objective. Some of those methods involve rather 33 
sophisticated mathematical concepts and, separately, some of the same methods include assumptions 34 
that were needed to assure success. Specifically, concepts of geometry, location, and mapping have 35 
enjoyed the attention of learned persons since the days of Pythagoras. The intent in this article is to honor 36 
and respect the contributions of our predecessors and to acknowledge input from current professionals. 37 
For the most part, the processes and procedures developed for handling spatial data have reached an 38 
impressive level of sophistication and efficiency. They work! And they serve the needs of the spatial data 39 
community as an integral part of the global economy which is measured in trillions of dollars! Question – 40 
is it being lazy to compare traditional methods and results with those that can be achieved by starting 41 
with the assumption of a single origin for 3-D data and building a spatial data model on rules of solid 42 
geometry? Yes, demonstrated efficiencies of an integrated model (both conceptual and computational) 43 
will ultimately justify and motivate transition to using a 3-D model for 3-D data worldwide.  44 
 45 
Conventions 46 
 47 
Instead of referring to a 3-D position as geodetic latitude, geodetic longitude, and ellipsoid height, this 48 
paper uses geodetic latitude, geodetic longitude, and geodetic height. Humans have referred to the third 49 
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dimension in terms of elevation, altitude, orthometric height, ellipsoid height, and dynamic height – each 50 
with good reason. Going forward, this convention completes the triplet of coordinates – geodetic  51 
latitude/longitude/height. Mathematically well-defined, geodetic height is synonymous with ellipsoid 52 
height as being the distance along the normal between the ellipsoid and a point. The Geodetic Glossary 53 
(NGS 1986) and the Glossary of the Mapping Sciences (ASCE/ACSM/ASPRS 1994) each include a definition 54 
for “height, geodetic” (Meyer 2021).    55 
 56 
The following conventions are not new but are provided for clarity. Multiple designations, often used 57 
interchangeably, are encountered when talking about the location of points.  58 
 59 

Point 1, standpoint, and “here” refer to a station as occupied – physically or “in one’s mind.” 60 
Point 2, forepoint, and “there” refer to a station at the other end of a line. 61 
P.O.B. is a Point of Beginning as selected by the user, often taken to be Point 1. 62 

 63 
Rectangular components of a vector are called “deltas” and computed as the difference of coordinate 64 
values – “there” minus “here.” The length of a vector does not change when viewed from a different 65 
perspective although the rectangular components do change with a change in orientation.    66 

 67 
Geocentric vectors:  ∆𝑋 =  𝑋2 − 𝑋1     ∆𝑌 =  𝑌2 − 𝑌1      ∆𝑍 =  𝑍2 −  𝑍1    68 
Local perspective vectors: ∆𝑒 =  𝑒2 −  𝑒1       ∆𝑛 =  𝑛2 − 𝑛1     ∆𝑢 =  𝑢2 − 𝑢1    69 
 70 

3-D spatial distance = 𝑆𝐷 =  √∆𝑋2 + ∆𝑌2 + ∆𝑍2   =   √∆𝑒2 + ∆𝑛2 + ∆𝑢2      (1)  71 
 72 
Introduction 73 
 74 
Assertion – the 3-D global spatial data model (GSDM) defines computational processes for manipulating 75 
spatial (and geospatial) data that are less complicated and more efficient than traditional methods 76 
without sacrificing geometrical integrity. Geometrical geodesy equations utilize directions and distances 77 
on the mathematical ellipsoid in terms of latitude and longitude. The third dimension is height above or 78 
below the ellipsoid. One element of complexity is that latitude and longitude are expressed with 79 
curvilinear units (radians or sexagesimal in degrees-minutes-seconds) while geodetic height is expressed 80 
in meters. Map projections are used to “flatten the Earth” and enable spatial data users to work with 81 
plane Euclidean geometry (length units) for horizontal position. Elevation describes the third dimension. 82 
Although units associated with map projections are linear, 3-D mathematical compatibility for 83 
manipulating spatial data suffers from the use of two separate origins – one for horizontal, another for 84 
vertical. True, 2-D mathematical rigor for geometrical geodesy and map projection equations has been 85 
preserved for horizontal positioning by promulgating high-quality bi-directional algorithms which have 86 
been published, have been programmed, and are readily available in software tools for spatial data 87 
conversions. To be consistent with conventions used by the National Geodetic Survey (NGS), “conversion” 88 
describes computing plane coordinates from latitude and longitude and “transformation” describes 89 
moving geospatial data from one datum to another. 90 
 91 
The primary disadvantage of map projections is that they are strictly 2-D mathematical models while 92 
modern practice routinely works with 3-D spatial and geospatial data. A secondary disadvantage of map 93 
projections is that horizontal distances are distorted when projected to a map, giving an unsettling 94 
realization that “a meter is no longer a meter.” In practice, distance distortions are controlled within some 95 
predetermined tolerance by using a low-distortion projection (LDP) which places the mapping surface 96 
near the average elevation of the area being mapped. The drawback to using LDPs is that, to stay within 97 
prescribed distortion tolerances, the effective horizontal area covered by a given projection is limited and 98 



3 

 

multiple zones are needed to map larger areas. Additionally, the geometrical integrity of any given map 99 
projection suffers when the vertical position of a point (whether mountaintop or deep well) exceeds 100 
established tolerance limits. Advantages of the 3-D GSDM over 2-D map projection procedures include:  101 
 102 

1. The GSDM preserves 3-D geometrical integrity – the model does not distort distances. 103 
2. The GSDM uses one set of public domain solid geometry equations worldwide. 104 
3. Subsequent geometrical elements are derived from stored X/Y/Z coordinate values.  105 
4. No zone constants, no grid scale factors, and no elevation factors are needed or used. 106 
5. GSDM equations are easily programmed with modest programming skills. 107 
6. A rotation matrix converts geocentric differences to local differences, ΔX/ΔY/ΔZ →  Δe/Δn/Δu. 108 

7. The GSDM provides local ground level horizontal distance computed as 𝐻𝐷 =  √∆𝑒2 + ∆𝑛2 . 109 
8. The 3-D azimuth is true north with respect to the standpoint meridian, α3D = arctan (Δe/Δn). 110 
9. A back azimuth is obtained by computing in reverse – from “there” to “here.”  111 
10. Meridian convergence is found as the difference between forward and back azimuths - 180°. 112 

 113 
Characteristics of the GSDM include (Burkholder 1997a, 2008, 2018): 114 
 115 

1. The GSDM is prefaced on the assumption of a single origin at Earth’s center of mass (CM). 116 
2. The GSDM is built on the geocentric Earth-centered Earth-fixed (ECEF) reference system. 117 
3. The functional model portion of the GSDM utilizes rules of solid geometry as formulated by René 118 

Descartes in 1637 and supplemented by enhancements that include matrices and vector algebra. 119 
4. The GSDM enables the user to “view the world” (or a point cloud) from any X/Y/Z location and 120 

provides local direction and distance from that user selected P.O.B. to any other point.  121 
5. A local plot of Δe/Δn pixel locations with respect to a user-selected P.O.B. is an orthophoto map. 122 
6. The stochastic model portion of the GSDM embodies the standard error propagation procedure:  123 

 124 

𝑌𝑌 =  𝐽𝑌𝑋 𝑋𝑋 𝐽𝑋𝑌
𝑡    where     (2) 125 

    126 

   ΣYY = Covariance matrix of computed result. 127 

  ΣXX = Covariance matrix of variables used in computation. 128 

  JYX  = Jacobian matrix of partial derivatives of the result with respect to the variables.  129 
 130 
Complexity 131 
  132 
Some may justifiably take issue with describing existing geometrical concepts and  computational 133 
procedures as complex. The reader is reminded that the goal of this article is to show how similar (or 134 
better) results can be obtained more efficiently by performing spatial data computations in 3-D space 135 
using solid geometry equations in the rectangular ECEF environment. The GSDM equations are not as 136 
complex as those used to perform computations on the ellipsoid or using 2-D map projection equations. 137 
 138 
Integrity of Algorithms 139 
 140 
Integrity is a carefully laid foundation upon which a reputation for quality professional services is built. 141 
The integrity of existing algorithms stands as a tribute to the talented mathematicians and other 142 
professionals over the years who have developed and tested many procedures for manipulating spatial 143 
data. One consequence is that, of necessity, simplicity is sacrificed to achieve a required level of integrity. 144 
Not to worry. . . computers and software tools make it possible for sophisticated results to be obtained at 145 
the push of a button. Although integrity and simplicity can be mutually exclusive, the goal of this paper is 146 
to show how the geometrical integrity of geospatial data can be preserved while using (simple) solid 147 
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geometry algorithms. Finding an appropriate balance between simplicity and integrity remains a challenge 148 
but, comparatively speaking, the geospatial data user can enjoy both when using the 3-D GSDM.  149 
 150 

1. Plane Surveying: In plane surveying, a “forward” traverse computation uses direction and distance 151 
from a standpoint to compute coordinates of the forepoint. An “inverse” computation between 152 
forepoint and standpoint should return the same direction and distance as used in the “forward” 153 
computation. This example is trivial because the model for computations is a 2-D plane surface. 154 
 155 

2.  Geodetic Surveying: In geodetic surveying, similar concepts and nomenclature are used in the 156 
“direct” and “inverse” computations but the process is less trivial - the underlying computational 157 
model is the mathematical ellipsoid, not a plane surface. Methods of varying complexity have been 158 
devised over the years for performing geodetic “direct” and “inverse” computations. When 159 
choosing a method for computing a geodetic “direct” or “inverse,” the reader should be alert to a 160 
possible trade-off between integrity and complexity embodied within a given algorithm. Several 161 
ellipsoid-based examples (there are others) include. . . 162 

 163 
a. Traditional methods for “direct” and “inverse” on the ellipsoid. 164 

i.) Thomas (1970) is a high-level comprehensive discussion of geodesics. 165 
ii.) Vincenty (1975) is also high-level and utilizes nested iterative algorithms.  166 
iii.) Jank and Kivioja (1980) is a rigorous iterative solution for programmable calculators. 167 
iv.) Bowring (1981) presents a “simple” method for lines up to 150 km. 168 
v.) Pittman (1986) introduces a rigorous recursive method for any length line. 169 
vi.) Rollins (2010) adapts meridian arc length to a geodesic with a change in variable. 170 
vii.) Meyer (2010) gives history of and describes trade-offs for various methods. 171 

 172 
b. The 3-D solution (Burkholder 2016a) for geodetic “direct” and “inverse” problems is different 173 

from ellipsoid-based methods in that computations are performed in 3-D space and not 174 
restricted to the surface of the mathematical ellipsoid. Based on 3-D solid geometry equations, 175 
there are no mathematical approximations in the GSDM algorithm. But there is an 176 
approximation (by choice of user) if/when a chord or an arc length computed by the GSDM is 177 
used rather than a more rigorously defined horizontal distance (Rollins and Meyer 2019). This 178 
puts the user in control over the balance between simplicity and integrity. As Burkholder 179 
(2016a) notes, comparison of an arc distance with a known geodesic length shows agreement 180 
within 0.5 mm on a 50 km line. If needed, an improvement to a computed arc distance to find 181 
the true geodesic distance can be realized using (more complicated) procedures as given in 182 
Burkholder (2008, 2018). By comparison, the GSDM inverse is “simple.” Additionally, the 183 
GSDM supports computation of geometrical elements such slope, horizontal, or arc distance – 184 
at any specified elevation. The veracity of a GSDM inverse, say beyond 50 km or a user-185 
selected threshold, can be found by comparing GSDM results with the results of a more 186 
rigorous method. Note, a 3-D point is on the ellipsoid if its X/Y/Z coordinates are computed 187 

using zero geodetic height (h = 0.000 m), i.e., , , 0.0 → X/Y/Z.  188 

 189 
3. Map Projections: When using a map projection, geodetic latitude and longitude are converted to 190 

plane coordinates using equations developed for the given projection and zone. Complexities of the 191 
bi-directional conversion equations are driven, in part, by making the projection “conformal.” It is 192 
impossible to preserve all three geometrical elements of angles, distances, and area when 193 
projecting from a curved surface to a flat map. But when using a conformal projection, it is possible 194 
to constrain the conversion equations mathematically so that an angle on the ellipsoid is the same 195 
as the angle on the map. A conformal projection is an ideal candidate for surveying, engineering, 196 
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and mapping applications because angles are not distorted, and horizontal distance distortions are 197 
kept within some predetermined tolerance. Mathematically, a projection is conformal if and only if 198 
the bi-directional conversion equations satisfy the Cauchy-Reimann differential equations.  199 

 200 
This is where simplicity becomes secondary to rigor and complexity. According to Wikipedia (2021), 201 

 202 
“In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after 203 
Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential 204 
equations which, together with certain continuity and differentiability criteria, form a 205 
necessary and sufficient condition for a complex function to be complex differentiable, that is, 206 
holomorphic. This system of equations first appeared in the work of Jean le Rond d'Alembert 207 
(d'Alembert 1752). Later, Leonhard Euler connected this system to the analytic functions (Euler 208 
1797). Cauchy (1814) then used these equations to construct his theory of functions. 209 
Riemann's dissertation (Riemann 1851) on the theory of functions appeared in 1851.”  210 

 211 
a.  Complexity notwithstanding, conformal projections for the U.S. state plane coordinate system 212 

have a long successful history of mathematical development briefly summarized as:   213 
 214 

i.) Gerard Mercator (Crane 2002) and (Taylor 2004) is credited with publishing the first 215 
conformal world map in 1569. The unique feature of his world map was that a navigator 216 
could draw a line port-to-port on the map and sail the constant bearing of that line to a 217 
distant port. It was not the shortest route port-to-port, but that simple procedure 218 
provided a reliable method for reaching the intended destination.   219 

 220 
ii.) Johann Heinrich Lambert (1728-1777) is credited with inventing the transverse 221 

Mercator projection and the Lambert conic conformal projection (Snyder 1989). The 222 
conformal projection specifically enforces the condition that an angle on the globe is 223 
projected without distortion to the map. Early justification for the conformal map 224 
included the ability to sail port-to-port on a constant bearing, as obtained from the 225 
map. Mathematicians such as Gauss (1777-1855), Krüger (1857-1923), and Hotine 226 
(1898-1968) contributed to further development of conformal projections. Additional 227 
sources can be found with a web search. 228 

 229 
iii.) In general, authors have used the following elements and symbols for the Cauchy–230 

Riemann equations and various latitudes. 231 
 232 

x =   Easting on map projection. 233 
y =   Northing on map projection. 234 

 =   geodetic latitude. 235 

 =   geodetic longitude, east 236 

 =   conformal latitude. 237 

 =   isometric latitude. 238 

  =   rectifying latitude. 239 

 =   ellipsoid eccentricity 240 
 241 
b. The Cauchy-Riemann equations for a conformal map projection (Snyder 1987 and others) are: 242 
 243 

𝜕𝑥

𝜕
=  

𝜕𝑦

𝜕
   𝑎𝑛𝑑  

𝜕𝑥

𝜕
= − 

𝜕𝑦

𝜕
        (3) 244 
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         245 
The conformal latitude and isometric latitude as used in mapping conversions are related as 246 
shown by Thomas (1952, page 86). The isometric latitude is computed using equation 4 and 247 
the conformal latitude by using  equation 5. Note that the difference between the two 248 
equations is the natural log (ln) function. Stem (1989, page 27) uses the isometric latitude in 249 
conversions for the Lambert conformal conic projection. The recommended solution is 250 
iterative (see Table 1), but a non-iterative solution can also be found using the conformal 251 

latitude and a series expansion of ( - ) as listed for conversions on the oblique Mercator 252 
projection (Stem 1989, page 42).    253 

 254 

  𝜏 = ln [tan (
𝜋

4
+  

∅

2
) (

1− 𝜖 sin ∅

1 + 𝜖 sin ∅ 
)

𝜖/2
]      (4) 255 

 256 

  tan (
𝜋

4
+ 

2
) =  tan (

𝜋

4
+  

∅

2
) (

1− 𝜖 sin ∅

 1 + 𝜖 sin ∅ 
)

𝜖/2

    (5) 257 

 258 

c. Among others, the ( - ) series expansion is part of the bi-directional conversions used by NGS 259 
(Stem 1989) for state plane coordinates. Adams (1921 reprint 1949) provides extensive 260 
development of various latitudes used in conformal mapping – given as an infinite series in 261 
terms of powers of ellipsoid eccentricity. For example, Adams (1949, pages 32 to 60) includes 262 

seven different derivations for the ( - ) infinite series in terms of the conformal latitude, . 263 
That series, shown in equation 7 below, is used in Stem (1989 page 39) as part of the oblique 264 
Mercator conversion equations.     265 

 266 

−  = (
𝜖2

2
+ 

5𝜖4

24
+ 

𝜖6

12
+ 

13𝜖8

360
) sin 2  + (

7𝜖4

48
+ 

29𝜖6

240
+ 

811𝜖8

11520
) sin 4  +   267 

 268 

   (
7𝜖6

120
+ 

81𝜖8

1120
) sin 6  + (

4279𝜖8

161280
) sin 8                                                       (6) 269 

 270 
Assigning coefficients c2, c4, c6, and c8, equation 6 can be written more compactly as. . . 271 

 272 
  −  = 𝑐2 sin 2  + 𝑐4 sin 4  + 𝑐6  sin 6  +  𝑐8  sin 8         (7) 273 
 274 

To avoid working with trigonometric functions of multiple latitudes, the following substitutions 275 
were made and like terms collected to obtain equation 8. 276 

 277 
sin 2𝑥 =   2 sin 𝑥 cos 𝑥 278 

 sin 4𝑥 =   8 sin 𝑥 𝑐𝑜𝑠3𝑥 − 4 sin 𝑥 cos 𝑥  279 
 sin 6 𝑥 = 32 sin 𝑥 𝑐𝑜𝑠5𝑥 − 32 sin 𝑥 𝑐𝑜𝑠3𝑥 + 6 sin 𝑥 cos 𝑥 280 
 sin 8 𝑥 = 128 sin 𝑥 𝑐𝑜𝑠7𝑥 − 192 sin 𝑥 𝑐𝑜𝑠5𝑥 + 80 sin 𝑥 𝑐𝑜𝑠3𝑥 − 8 sin 𝑥 cos 𝑥 281 

 282 
−  =     2 𝑐2 sin cos   283 

        − 4 𝑐4 sin cos +   8 𝑐4 sin  𝑐𝑜𝑠3  284 
         + 6 𝑐6 sin cos − 32 𝑐6 sin  𝑐𝑜𝑠3 +   32 𝑐6 sin  𝑐𝑜𝑠5  285 

                      − 8 𝑐8 sin cos + 80 𝑐8 sin  𝑐𝑜𝑠3 − 192 𝑐8 sin  𝑐𝑜𝑠5 + 128 𝑐8 sin  𝑐𝑜𝑠7  286 
 287 

−  =  𝐹0 sin cos  + 𝐹2 sin  𝑐𝑜𝑠3 + 𝐹4 sin  𝑐𝑜𝑠5 + 𝐹6 sin  𝑐𝑜𝑠7    or nested. . . 288 
 289 

−  =  sin cos  (𝐹0 + 𝑐𝑜𝑠2  (𝐹2 +  𝑐𝑜𝑠2  (𝐹4 + 𝐹6 𝑐𝑜𝑠2  ) ))          (8)  290 
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  Where  F0  =   2 (c2 – 2 c4 + 3 c6 – 4 c8 )      291 
F2  =   8 (c4 + 4 c6 + 10 c8 )  292 
F4     =  32 ( c6 - 6 c8 ) 293 
F6 =  128 c8 294 

 295 
Stem (1989, page 42) specifically uses equation 8 as part of the oblique Mercator inverse 296 
algorithm. It is also offered as an option (page 29) as part of the inverse on the Lambert 297 
conformal conic projection. It is noted that equation 5 can also be iterated to find geodetic 298 
latitude from the conformal latitude. The accuracy of an iteration solution is determined by the 299 
termination criterion selected by the user or (rarely) by the significant digit capacity of the 300 
computer being used. Iteration can be quite efficient.  301 

 302 
However, when using equation 8, a question arises whether or not sufficient terms were 303 
included in the infinite series expressed in equation 6. Additional terms in the infinite series 304 
will include tenth powers of ellipsoid eccentricity. A class project performed for Professor 305 

Ralph Moore Berry documented an algorithm containing 10th power terms in the ( - ) series – 306 
see Burkholder (1972). Table 1 includes a summary of tests over a range of latitudes using the 307 
eccentricity computed from the reciprocal flattening of the GRS 80 ellipsoid, 1/f = 308 
298.2572221008827. Four steps in the tests include: 309 

 310 
i.) Start with an “even” value of geodetic latitude and compute a value of conformal 311 

latitude using the closed form of equation 5. 312 
 313 

ii.) Use iteration to compute geodetic latitude from the conformal latitude as determined 314 
in step 1. The integrity of a given method is readily apparent by noting any deviation 315 
from the original when returning to the starting value of geodetic latitude in seconds.  316 
 317 

iii.) Use equation 8 to compute the geodetic latitude and note any difference. 318 
 319 

iv.) Use the equation in the link above to include the tenth power term for eccentricity.  320 
 321 

The values in Table 1 indicate that eighth powers of eccentricity ( 8 ) provide sufficiently 322 
accurate conversions for state plane coordinates. Although iteration is the “best possible” 323 
method, equation 8 provides results good to 0.0000004 seconds of arc or better (0.012 mm). 324 
Table 1 also shows that two more magnitudes of accuracy can be achieved if additional terms 325 

in the infinite series and tenth powers of eccentricity ( 10 ) are included.  326 
 327 

d. The previous section looked at the Lambert conformal conic and the oblique Mercator 328 
projections. This section looks at the transverse Mercator algorithm. The algorithm given by 329 
Thomas (1952) for the Mercator projection of the ellipsoid is straight forward and can readily 330 
be shown to fulfill the Cauchy-Reimann equations. But it is more of a challenge to verify that 331 
the equations given by Thomas (1952) or those in Stem (1989) for projecting the ellipsoid using 332 
a transverse Mercator projection satisfy the Cauchy-Reimann equations. The equations given 333 
by Stem (1989) for the transverse Mercator projection and the Universal Transverse Mercator 334 
(UTM) projection have been thoroughly tested and deliver excellent results. Comments on the 335 
complexity of those equations are moot as conversion programs have been written (and are 336 
readily available) for conversion of geographic latitude/longitude to plane coordinates 337 
(forward) and plane coordinate conversion to latitude/longitude (inverse). For the reader 338 
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interested in pursuing the origins of the transverse Mercator projection, the equations 339 
included in Stem (1989) are built on the Gauss-Krüger algorithm.  340 

 341 

 342 
 343 

e. Anticipating publication of the 2022 horizontal and vertical datums, NGS promotes continued 344 
use of map projections (with added LDP options) to be implemented as SPSC2022. Minimizing 345 
the difference between grid and ground distances on the projection is an overriding criterion for 346 
surveyors and engineers. Another conflicting criterion, attractive to the GIS community, is to 347 
adopt a map projection that provides a unique coordinate location for any point in a state. NGS 348 
is going to great lengths to serve both camps of users by designing and implementing map 349 
projections to include both criteria. Equations for performing mapping conversions and input 350 
parameters for the various zones are yet to be finalized but several possibilities include: 351 

 352 
i.) The conversion equations included in Stem (1989) for the NAD 83 can be modified to 353 

accommodate input parameters proposed for the low-distortion projections. NGS is in 354 
the process of evaluating and adopting specific parameters to be used for SPCS2022 355 
projections. Possible changes to existing NGS 5 algorithms are summarized in 356 
Burkholder (2020a). Those equations have been tested for integrity and can be shown 357 
to meet the conversion accuracy requirements established by NGS.  358 
 359 

ii.) Rolling and Meyer (2019) focus on developing low-distortion projection equations for 360 
an elevated reference surface. A consequence of using an elevated reference surface 361 
with existing algorithms is that they fail to meet the strict definition of conformality. 362 
Rollins and Meyer (2019) include diagrams that show the amount of non-conformality 363 
for various values of constant-h surfaces for three of the four methods presented.   364 

 365 
Question – does a LDP really need  to be conformal? Or “What benefit does a conformal 366 
projection provide?” For Mercator, the benefit of his 1569 World Map (later designated as 367 
being “conformal”) was that a sailor could plot a course port-to-port on a conformal map and 368 
sail a constant bearing from one port to the other. That criterion is no longer critical as better 369 
methods are readily available for navigation. Another consequence of a conformal projection is 370 
that distance distortion at a point is azimuth independent – that is an angle on the ground is 371 
portrayed without distortion on the map. When using the GSDM, there is no distance distortion 372 
at a point meaning that the conformal criterion is moot. Investigation of the properties of a 3D 373 

Table 1 – Computing Geodetic Latitude from Conformal Latitude 
Comparing Results from Iteration and Powers of Eccentricity e8 and e10 

 

 PHI       Given            CHI Computed       PHI Computed       PHI Computed       PHI Computed         e8th         e10th  

 Deg     PHI in sec.        by Equation 4      by iteration       Using e 8th        Using e10th        missed by     missed by 

  

  5   18,000.0000000000  17,880.1069220654  18,000.0000000000  17,999.9999997728  17,999.9999999985    0.00000023    0.0000000015 

 10   36,000.0000000000  35,763.8270514390  36,000.0000000000  35,999.9999996264  35,999.9999999978    0.00000037    0.0000000022 

 15   54,000.0000000000  53,654.6673609163  53,999.9999999999  53,999.9999996049  53,999.9999999979    0.00000040    0.0000000020 

 20   72,000.0000000000  71,555.9251616317  71,999.9999999999  71,999.9999996988  71,999.9999999989    0.00000030    0.0000000010 

 25   90,000.0000000000  89,470.5902540013  90,000.0000000000  89,999.9999998538  90,000.0000000000    0.00000015    0.0000000000 

 30  108,000.0000000000 107,401.2553499972 108,000.0000000000 108,000.0000000009 108,000.0000000006   -0.00000000   -0.0000000006 

 35  126,000.0000000000 125,350.0373338391 126,000.0000000000 126,000.0000000896 126,000.0000000008   -0.00000009   -0.0000000007 

 40  144,000.0000000000 143,318.5117432160 144,000.0000000000 144,000.0000001058 144,000.0000000004   -0.00000011   -0.0000000003 

 45  162,000.0000000000 161,307.6625985220 162,000.0000000000 162,000.0000000703 162,000.0000000000   -0.00000007    0.0000000000 

 50  180,000.0000000000 179,317.8493738962 180,000.0000000000 180,000.0000000188 179,999.9999999997   -0.00000002    0.0000000003 

 55  198,000.0000000000 197,348.7924852802 198,000.0000000000 197,999.9999999809 197,999.9999999997    0.00000002    0.0000000003 

 60  216,000.0000000000 215,399.5781671093 215,999.9999999999 215,999.9999999675 215,999.9999999998    0.00000003    0.0000000002 

 65  234,000.0000000000 233,468.6830278602 234,000.0000000000 233,999.9999999726 233,999.9999999999    0.00000003    0.0000000001 

 70  252,000.0000000000 251,554.0179310941 252,000.0000000000 251,999.9999999836 252,000.0000000000    0.00000002    0.0000000000 

 75  270,000.0000000000 269,652.9901668963 270,000.0000000001 269,999.9999999917 270,000.0000000000    0.00000001    0.0000000001 

 80  288,000.0000000000 287,762.5821902211 288,000.0000000001 287,999.9999999955 288,000.0000000000    0.00000000    0.0000000001 

               Note 3  Note 4 

Note 1 – Iteration is the demonstrated “gold standard” to which other methods are compared. 

Note 2 – At 30.9 meters per second of latitude, 0.0000001 seconds is about 0.003 mm on the ground. 

Note 3 – This column shows sufficient accuracy of Special Publication #67 algorithm for state plane coordinate computations. 

Note 4 – If needed, this column shows two magnitudes improvement over Special Publication #67 results. 
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azimuth (Burkholder 1997b) establishes the integrity of geodetic azimuths at a point and 374 
subsequent angles between them.  375 

 376 
f. Comparing the simplicity of the GSDM equations with more complex equations used in 377 

conformal mapping includes: 378 

 379 
i.) Coordinates on a conformal map projection are constrained to fulfill the conditions 380 

stipulated in equation 3. The bi-directional algorithms are mathematical, not graphical.    381 
 382 

ii.) Mathematical reductions can be depicted graphically when using the GSDM.  383 
 384 

iii.) On the complexity scale, the GSDM geometrical procedures and equations are much 385 
easier to follow than the rules imposed by the Cauchy-Reimann equations. 386 
 387 

iv.) The integrity and adequacy of GSDM algorithms is well established Burkholder (2019b).  388 
The GSDM does not distort physical measurements and algorithms are easier to follow. 389 
 390 

v.) If appropriate software is used properly, the difference in complexity does not mean 391 
that one system enjoys more integrity than the other. 392 
 393 

vi.) For some, the ease of checking results of GSDM computations is preferred to placing 394 
blind trust in “button pushing” solutions. Admittedly, software that solves complex 395 
problem exists and has been proven. Reputable software can be used with confidence.    396 

 397 
Reduction of Observations 398 
 399 
The equations for map projection conversions discussed previously include some mathematical “heavy 400 
lifting.” Additional issues more closely related to geometry of the survey are involved when using map 401 
projections. Successful use of state plane coordinates is predicated on using grid azimuths and grid 402 
distances. The integrity issues of grid azimuths and distances as obtained from field observations are 403 
separate from the impact of assumptions (issues) built into the map projection algorithms.  404 

 405 
1. Grid azimuth: A consequence of using a conformal projection is that angles on the map are the same 406 

as the observed field angles - almost. On most conformal projections, no special steps are needed to 407 
obtain a grid azimuth. The caveat is that when long distances are involved (say over 5 km), the 408 
difference between an angle and an azimuth could be an issue and a (t-T) correction may be needed 409 
– see (Stem 1989) Figure 2.5 and Table 4.3a.    410 
 411 
When using the GSDM, the true north azimuth, called the 3D Azimuth by Burkholder (1997b), from 412 
standpoint to forepoint is computed directly as arctan (Δe/Δn). Computing the azimuth between 413 
points is a standard “simple” inverse computation. The angle at a standpoint, between  two different 414 
forepoints is the same on the map as it is on the ground. The back azimuth from forepoint to 415 
standpoint is computed the same way (in reverse) but gives a different result because the meridians 416 
are not parallel at the standpoint and forepoint – an exception being two points on the same 417 
meridian. That means the local Δe and Δn components (as obtained from the rotation matrix) are not 418 
the same from standpoint to forepoint as from forepoint to standpoint. But note that forward and 419 
inverse azimuths are different by 180° when using Δe and Δn components from the P.O. B. as local 420 
eastings and northings in the P.O. B. tangent plane. 421 
 422 
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Added bonus: Due to Earth curvature, meridians are not parallel - convergence is the difference 423 
between forward and back azimuth +/- 180°. Standard practice when using state plane coordinates is 424 
to reference grid azimuths to the central meridian of the projection. Grid north lines on the 425 
projection are parallel (an important feature for flat-Earth surveying) and, if a true-north azimuth is 426 
required, convergence at a point is used to find the true (geodetic) azimuth. A similar practice can be 427 
used with the GSDM in that the user chooses a P.O.B. – typically such that local Δe and Δn differences 428 
are positive. Those local differences (whether positive or negative) can be used as local coordinates in 429 
the tangent plane of the P.O.B. Just like plane surveying, an inverse between those local project 430 
coordinates will provide a local tangent plane horizontal distance and a “local grid” azimuth. The 431 
convergence concept is the same as when using a state plane (or LDP) projection. The only difference 432 
when using the GSDM is that convergence (a measure of meridians not being parallel) is between the 433 
local project point and the chosen P.O.B. – meaning that the user can choose between using true 3D 434 
azimuths (as described in previous paragraph) or “local grid” azimuths on a plat. A detailed example 435 
of using local grid azimuth is given in Burkholder (2007)   436 
 437 

2. Grid distance:  Conceptually, two separate operations are required to obtain a grid distance from a 438 
horizontal ground distance; 1) reduction of the ground level horizontal distance to the mathematical 439 
ellipsoid and 2) reduction of the ellipsoid distance to the mapping surface. Modern practice often 440 
includes both steps in one operation (using the combined factor). Stem (1989) describes the steps 441 
needed. A measured slope distance is reduced to horizontal, that horizontal distance is then reduced 442 
to the ellipsoid, and finally, the ellipsoid distance is reduced to the mapping surface where it is known 443 
as the grid distance. The reduction to ellipsoid is accomplished using the elevation factor and the 444 
reduction from ellipsoid distance to grid distance is computed using the grid scale factor. The 445 
elevation factor and the grid scale factor are often multiplied together and known as the combined 446 
factor – making the reduction ground-to-grid a “one-step” process.  447 

 448 
Conventional computation of the combined factor – multiplying the elevation factor times the grid 449 
scale factor – involves the following variables/questions: 450 

 451 
a. What is the appropriate elevation for computing the elevation factor? 452 
b. What radius of Earth’s curvature is to be used? This is generally not a problem.  453 
c. Should the grid scale factor for the line to be computed at:  454 

 455 
i.) The standpoint? 456 
ii.) The endpoint? 457 
iii.) The midpoint? 458 
iv.) Stem (1989) recommends Simpson’s 1/6 Rule for long lines. 459 

 460 
An important goal in using a low-distortion projection is that the grid/ground difference is sufficiently 461 
small as to be ignored for many applications. Yes, that is quite simple. But, for cases in which more 462 
precision is needed, simplicity takes a back seat. Used by many and avoided by some, standard 463 
procedures for computing appropriate combined and grid scale factors can be found in Stem (1989). 464 
Burkholder (2004) provides additional information on the accuracy of a computed elevation factor.    465 

 466 
Comments on the Combined Factor 467 
 468 
The integrity of a computed position (state plane or LDP coordinates) can be assured by careful 469 
application of the procedures included in Stem (1989) and discussed above. Regretfully, the integrity of a 470 
distance reduction can be compromised by using a “defective” combined factor. A legitimate combined 471 
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factor depends on choices of location and elevation. Sometimes inappropriate values are used. Of course, 472 
once decisions with respect to location and elevation are made, the definition of the combined factor is 473 
unambiguous – it is the product of the grid scale factor and the elevation factor.  474 
 475 
With the advent of GNSS positioning, an alternate method for computing the combined factor avoids the 476 
approximations and challenges of computing the correct combined factor between points. The difference 477 
is that, using GNSS, latitude/longitude (and plane coordinates) are determined independently of a ground  478 
traverse computation. The alternate (equivalent) definition of the combined factor is the ratio of grid 479 
distance over horizontal ground distance. Horizontal ground distance is derived from GNSS vectors and 480 
grid distance is computed from an inverse of grid (SPCS or LDP) coordinates. Approximations of grid scale 481 
factors and elevation factors are thereby avoided. But it should be noted, computing the combined factor 482 
directly from the ratio, relies heavily on the user’s choice of definition for horizontal distance and the 483 
elevation (geodetic height) at which the horizontal distance is computed. An example based on using the 484 
GSDM is provided in Burkholder (2019).  485 
 486 
Overall Comparison - GSDM and 2D/1D Methods 487 
 488 
The 3-D Diagram shown in Figure 1 first appeared in Burkholder (1993) and is described in more detail in 489 
Burkholder (1997). A brief summary of the features in Figure 1 include: 490 
 491 

 492 
Figure 1 Diagram of the 3-D Global Spatial Data Model 493 



12 

 

 494 
1. Primary X/Y/Z coordinates are stored in Box 1 at the top of the diagram. Traditional practice using 495 

geodetic latitude/longitude/height follows the left side of the diagram. Rectangular solid geometry 496 
vector components are used on the right side of the diagram. 497 
 498 

2. Crossover between 3-D and traditional practice and measurements occurs at the bottom. Using total 499 
station observations, it is possible to “go up” either side to compute and store X/Y/Z positions. 500 

 501 
3. Geoid modeling is an essential part of traditional practice on the left side. Geodetic height is used for 502 

the third dimension on the right side of the diagram. That avoids geoid modeling and provides direct 503 
access for total station observations to be used efficiently. 504 

 505 
Distance Options 506 
 507 
The algorithms in the GSDM do not distort physical measurements (there is no grid scale factor or 508 
elevation factor) but the user enjoys several options as to which distance to compute. In addition to being 509 
able to compute a slope distance in 3-D space using equation 1, two fundamental choices for horizontal 510 
distances are shown in Figure 2A and Figure 2B. In each case, the computation is “easy” to perform. 511 
 512 
 Figure 2A: Distances are computed as chord distances using equation 1. 513 

 Figure 2B: Flat-Earth horizontal distances are computed as √∆𝑒2 + ∆𝑛2 .  514 

 515 
Figure 2A Chord Distances   Figure 2B Right Triangle Components 516 

 517 
A more comprehensive discussion of distance options is included in Burkholder (2019). Summary 518 
comments related to Figure 2A and Figure 2B include: 519 
 520 
1. X/Y/Z coordinates for Points A and B are computed with latitude/longitude of standpoint and 521 

forepoint but with zero geodetic height (h = 0.000 m) in each case. 522 
 523 

2. X/Y/Z coordinates for Point E are computed with latitude/longitude of standpoint, but h at forepoint. 524 
 525 

3. X/Y/Z coordinates for Point D are computed with latitude/longitude of forepoint, but h at standpoint. 526 
 527 

4. Equation 1 can be used to compute the 3-D spatial distance between any two X/Y/Z points. 528 
 529 

5. “Best” approximation for horizontal distance between C and F is 𝐻𝐷 =  √∆𝑋2 +  ∆𝑌2 + ∆𝑍2 −  ∆ℎ2. 530 
This is very nearly identical to the mean of distances EF and CD (dotted line) in Figure 2A, 531 
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 532 
6. A chord distance between two points by equation 1 (approximates arc distance for lines < 50 km). 533 

a. X/Y/Zs of two points on ellipsoid – both points have zero geodetic height.   534 
b. X/Y/Zs of two points at same geodetic height, ℎ1 =  ℎ2.  535 

 536 

7. Local tangent plane horizontal distance from standpoint to forepoint,  𝐻𝑆1→2 =  √∆𝑒2 + ∆𝑛2 . 537 
 538 

8. The local tangent plane horizontal distance HD1→2 is close, but not exactly the same as HD2→1. 539 
a. Local tangent plane distance is right triangle component of slope distance and assumes plumb 540 

lines are parallel at both ends of the line – flat-Earth surveying. 541 
b. Forward and reverse horizontal distances are not identical due to different tangent planes. 542 
c. If using P.O.B. local coordinates, the forward and reverse distances are the same because the 543 

eastings and northings (local P.O. B. coordinates) lie in the same tangent plane as the P.O.B.  544 
d. If using P.O. B. local coordinates, the forward and back azimuths differ by 180° 545 

 546 
9. The slope distance between two points in 3-D space is easily computed using equation 1. Incidentally, 547 

the distance “here” to “there” in 3-D space is the same as the distance “there” to “here.” Given the 548 
user has selected the standpoint as “here” and forepoint as “there,” a rotation matrix is used to 549 
compute local vector components from geocentric components. Stated differently, a rotation matrix 550 
changes the perspective of a 3-D vector from geocentric to local - with respect to the latitude and 551 
longitude of the standpoint – equation 10. The transpose of the same rotation matrix is used to 552 
compute geocentric components from local components – equation 11. The matrix form and 553 
associated “long hand” form are given for each case as: 554 

 555 
Local vector components computed from geocentric vector components: 556 

 557 

[
∆𝑒
∆𝑛
∆𝑢

] =  [ 
       − sin                    cos                0  

− sin ∅ cos      − sin ∅ sin          cos ∅ 
   cos ∅ cos          cos ∅ sin           sin ∅ 

] [
∆𝑋
∆𝑌
∆𝑍

]        (10) 558 

 559 
  ∆𝑒 =  −∆𝑋 sin  +            ∆𝑌 cos        (10a) 560 
  ∆𝑛 =  −∆𝑋 sin ∅ cos  −  ∆𝑌 sin ∅ sin  +  ∆𝑍 cos ∅    (10b) 561 
  ∆𝑢 =   ∆𝑋 cos ∅ cos  + ∆𝑌 cos ∅ sin  + ∆𝑍 sin ∅        (10c) 562 
 563 

Geocentric vector components computed from local vector components: 564 
 565 

[
∆𝑋
∆𝑌
∆𝑍

] =  [ 
  − sin       −sin ∅ cos           cos ∅ cos   

    cos       − sin ∅ sin          cos ∅ sin
  0                cos ∅                    sin ∅ 

] [
∆𝑒
∆𝑛
∆𝑢

]        (11) 566 

 567 
  ∆𝑋 =  −∆𝑒 sin  − ∆𝑛 sin ∅ cos  + ∆𝑢 sin ∅     (11a) 568 
  ∆𝑌 =     ∆𝑒 cos  − ∆𝑛 sin ∅ sin  +  ∆𝑢 sin ∅     (11b) 569 
  ∆𝑍 =                            ∆𝑛 cos ∅           +   ∆𝑢 sin ∅     (11c) 570 

 571 
3-D Direct and Inverse  572 
 573 
The following equations are included for completeness and to show simplicity. In Figure 1, the 3-D 574 
“direct” is labeled as BK3 and the 3-D “inverse” is labeled as BK4.  575 
 576 
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 3-D Direct (forward computation)   577 
 578 
  𝑋2 =  𝑋1 + ∆𝑋         (12) 579 
  𝑌2 =  𝑌1 + ∆𝑌         (13) 580 
  𝑍2 =  𝑍1 +  ∆𝑍         (14) 581 
 582 
 3-D Inverse (reverse computation) 583 
 584 
  ∆𝑋 =  𝑋2 − 𝑋1         (15) 585 
  ∆𝑌 =  𝑌2 − 𝑌1         (16) 586 

∆𝑍 =  𝑍2 − 𝑍1         (17) 587 
 588 
Geodesy Equations 589 
 590 
The following information and equations are used to compute X/Y/Z geocentric rectangular coordinates 591 
from geodetic latitude/longitude/height and to compute geodetic latitude/longitude/height from X/Y/Z  592 
geocentric coordinates. X/Y/Z coordinates in meters can be either positive or negative, large or small. 593 
 594 
 Name and parameters of ellipsoid – most generally the GRS 1980 595 
  Semi-major axis, a   =  6,378,137 m exactly 596 
  Reciprocal flattening, 1/f  = 298.25722210088 597 

 Eccentricity squared of ellipsoid = 2 f – f 2,       2  = 0.006694380023 598 
 599 
 Compute geocentric X/Y/Z coordinates – Input: 600 
 601 

Geodetic latitude, north is positive, south is negative    602 

Geodetic longitude, east is positive, west is negative    603 
Geodetic height in meters      h 604 

 605 

  N = ellipsoid normal for given latitude,   𝑁 =  
𝑎

√1− 𝜀2 𝑠𝑖𝑛2
          (18) 606 

 607 
  𝑋 =  (𝑁 + ℎ) cos cos        (19) 608 
  𝑌 =  (𝑁 + ℎ) cos sin        (20) 609 
  𝑍 =  [𝑁 (1 −  𝜀2) + ℎ] sin        (21) 610 
 611 
 Compute geodetic latitude, longitude, and height from X/Y/Z coordinates – Input X/Y/Z: 612 
 613 

Note – this is the most complicated portion of the GSDM computations. Equations 19, 20, and 21  614 
can be algebraically inverted for a solution but the closed form of equation 23 has geodetic 615 
latitude on both sides of the “equals” sign, requiring a iteration to solve.  616 

 617 

  =  𝑡𝑎𝑛 −1  (
𝑌

𝑋
)         (22) 618 

 619 

  =  𝑡𝑎𝑛−1 [
𝑍

√𝑋2+ 𝑌2
 (1 +  

2 𝑁 sin

𝑍
)]     (23) 620 

 621 

  ℎ =  
√𝑋2+ 𝑌2

cos
− 𝑁       (24) 622 
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 623 
Of various methods that could be employed to iterate equation 23, the following is recommended. Start 624 

with an initial approximation of latitude ( 0) by equation 25 and compute N0 by equation 26. Use those 625 

values as I = 0 and Ni = 0 in equation 27 to find a better value of latitude ( I = 1). With the better value of 626 
latitude, compute a better value of Ni = 1. Terminate iteration when the subsequent value of latitude is 627 
sufficiently smaller than the previous one. Convergence should not require more than 3 or 4 iterations.  628 
 629 

  
0

=  𝑡𝑎𝑛−1 (
𝑍

√𝑋2+ 𝑌2  (1− 𝜀2)
)    and     𝑁0 =  

𝑎

√1− 𝜀2 𝑠𝑖𝑛2 0

           (25) and (26)      630 

 631 

  
𝑖+1

=  𝑡𝑎𝑛−1  [
𝑍

√𝑋2+ 𝑌2
 (1 +  

𝜀2 𝑁𝑖 sin 𝑖

𝑍
)]     (27) 632 

 633 
After equation 27 has been sufficiently iterated, equation 24 is used to find geodetic height. 634 
 635 
Credible methods for computing geodetic latitude, longitude, height without iterating can be found in 636 
Burkholder (1997, 2008, 2018), Vermeille (2009), Meyer (2010), or using a web search.  637 
 638 
Stochastic Model 639 
 640 
This article compares the complexity of traditional ellipsoid-based computations with the complexity of 641 
those equations used in the GSDM. In addition to preserving geometrical integrity of spatial and 642 
geospatial data using “simple” equations, the GSDM also includes a stochastic model that can be used to 643 
assess spatial data accuracy.   644 
 645 
Use of the stochastic model is covered in Burkholder (1997a, 1999, 2008, 2016, 2017, and 2018). 646 
 647 
Other Issues 648 
 649 
The case for integrity and simplicity has been made. But it would be naïve to ignore other factors germane 650 
to the discussion. The challenge cannot be met by a “one size fits all” solution. Very briefly, other factors 651 
deserving consideration include: 652 
 653 
1. Surveying, as a part of the spatial data community, provides career opportunities for persons 654 

talented in math/geometry, astronomy/geodesy, computers/electronics, legal/cadastral, office/field, 655 
sole proprietorship/corporate/agency environments, research/data collection, finance/logistics, and 656 
running a business. 657 
 658 

2. From the perspective of pedagogy and learning styles people, draw on various talents such as logical-659 
mathematical intelligence, spatial intelligence, linguistic intelligence, kinesthetic intelligence, musical 660 
intelligence, interpersonal intelligence, intrapersonal intelligence, and naturalistic intelligence 661 
(Brown, et.al., 2014).  662 

 663 
3. Surveying (as part of the spatial data spectrum) policy is established on various levels by 664 

manufacturers, software vendors, technicians, analysists, sole practitioners, business owners, 665 
professional associations, corporate managers, federal/state/local agencies, researchers, academics, 666 
and others. Again, “once size fits all” is not the ultimate goal, but the benefits of using a common 667 
“simple” spatial data model across the entire spectrum deserves careful consideration. 668 

 669 
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     670 
Summary 671 
 672 
1. The spatial data community has achieved impressive results using ellipsoid-based methods for spatial 673 

data manipulations. Admittedly some of those computations are rather complex but algorithms have 674 
been developed, tested, and programmed. Software is readily available for manipulating spatial (and 675 
geospatial) data and the end user need not understand the processes or steps involved.  676 
 677 

2. Reliable software, fast computers, unlimited (cloud) storage capacity, and ubiquitous mobile devices 678 
mean that problems can be reliably solved using existing methods and procedures. As stated before, 679 
they work. On the other hand, an over-emphasis rote can be dangerous. Brown et.al., (2014) make 680 
the point that “it is better to solve a problem than to memorize a solution.” At some level of 681 
accountability, the licensed professional must take responsibility for the integrity of results and 682 
services provided to a client. An evaluation of consequences and ethics should never go out of style -- 683 
who checks the checker?  684 
 685 

3. Evolving to use of an integrated 3-D model for spatial data for all applicable applications will take 686 
time. In the meantime, society, and spatial data users at all levels, stand to reap enormous benefits to 687 
the extent common goals can be established and visionary leadership (involving various talents) is 688 
brought to bear on the challenge. 689 

 690 
4. The challenge is enormous, and opportunities can be exciting. The banner is “Simple is Better!” 691 
 692 
 693 
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