Spatial Data Considerations for Civil Engineers

Earl F. Burkholder, PS, PE, F.ASCE
President, Global COGO, Inc.

http://www.globalcogo.com

ASCE Texas Section Fall Meeting
Camino Real Hotel
El Paso, Texas
October 6-9, 2010
Spatial Data Considerations for Civil Engineers

Earl F. Burkholder:

- Member of ASCE since 1972.
- Taught surveying at NMSU 1998 to 2010.
- Wrote “The 3-D Global Spatial Data Model”
- Current Secretary of Geomatics Division ASCE
- 2010 ASCE Surveying & Mapping Award
 - October 22, 2010
 - ASCE Annual Meeting, Las Vegas, Nev.
Meeting Theme - Mission Possible:

- Sustainability in the Desert Southwest
- Permanence of location is related to:
 - Geography, knowing where things are.
 - Geometry and geometrical relationships.
 - Geodesy and spatial data accuracy.
 - Measurement; technology and tools.
 - 3-D digital spatial data
 - bits, bytes, binary, ASCII, and www.
Spatial Data Considerations for Civil Engineers

Mission Impossible:
- “Get it” all the first time.
- Arrive at a goal without benefit of the journey.

Assumptions:
- Civil Engineers need/use spatial data.
- Not everyone learns surveying in college.
- Engineers and technicians know geometry.
- New technology facilitates productivity.
- Learning can be enjoyable if resources are available and if information is well organized.

What does it take to increase productivity?
I need to gage the audience:

- What does it take to keep us on same page?
- I presume many are sophisticated users.
 - Technicians can be geometrical whizzes.
 - Professionals are more concept oriented.
- Talk is balance between abstract/practical.
- My comments may be impractical & futuristic.
- Web links are included for additional study.
- Full paper is printed in the proceedings.
Let’s talk about SPATIAL DATA – Surveying

- Maps, geometry, and coordinates.
- Flat Earth and limiting assumptions.
- Datums – horizontal and vertical.

“3-D Datum for a 3-D World” article in Geospatial Data Solutions, May 2004

- Geographic Information Systems (GIS).
 Universal data storage system – 3-D?

- Spatial data accuracy – How good (reliable) are the data? Consequences of bad data?
What is the Global Spatial Data Model (GSDM)?

- The GSDM is an arrangement of existing geometrical elements and concepts.
- GSDM is based on the DoD Earth-centered Earth-fixed (ECEF) geocentric coordinates.
- GSDM is equally applicable:
 - Worldwide with same set of equations.
 - In any discipline using spatial data.
- Fully supports 3-D digital spatial data.
- The GSDM contains no secrets.
The BURKORD™ 3-D Diagram

1. Geocentric Coordinates: X, Y, Z
 - True 3D, Computations follow rules of solid geometry
 - Linear adjustment model
 - Meter length units

2. Geodetic Coordinates + Ellipsoid Heights
 (Units of Degrees, Minutes and Seconds) (meter length units)

3. Geocentric Coordinate Differences
 - \(\Delta X, \Delta Y, \Delta Z \) (Meters)
 - GPS Results

4. Geoid Heights
 Geoid Height Differ.

5. Curvature and Refraction

6. Rotation Matrix

7. Local Geodetic Horizon Coordinate Differences:
 - \(\Delta e, \Delta n, \Delta u \) (Meters)

8. Geodetic Coordinates + Orthometric Heights

9. (Pseudo 3-D Coordinates)
 State Plane (Map Projection)
 Orthometric Coordinates (Leveling)

10. P.O.B. Datum Coordinates:
 - (feet/meters)
 - Survey plots

11. Mark-to-Mark (Total Station) Observations
 - Slope distances
 - Azimuths
 - Zenith directions

12. Project Datum or Surface Coordinates

13. True 3-D Spatial Data

2-D Horizontal + 1-D Vertical
Spatial Data Considerations for Civil Engineers

Three useful coordinate systems - I

- **Geodetic Coordinates:**
 - Latitude, angular distance from Equator.
 - Longitude, angular value from Greenwich.
 - Ellipsoid height above or below ellipsoid.

- **Geocentric ECEF Metric Coordinates:**
 - Origin at Earth’s center of mass.
 - X & Y, plane of Equator, X at Greenwich.
 - Z is parallel with spin axis of Earth.
 - Rectangular coordinates & solid geometry.
 - Work with coordinate differences.

Three useful coordinate systems - II

• Local – state plane or other well-defined:
 - East/north/up is right-handed.
 - North/east/up is left-handed. Either is OK.
 - Be careful with flat-Earth assumption!

• Low distortion projection:
 - Becoming popular, but not recommended because it is a 2-D model. Elevations need to be handled separately.

Spatial Data Considerations for Civil Engineers

Types of Spatial Data

• Absolute values are coordinates in a well-defined system, X/Y/Z or east/north/up.

• Relative values are differences within the same system.
 - GIS data bases use absolute coordinates.
 - Engineers work with measurements and relative differences.

• Local accuracy is closely associated with relative values.
Spatial Data Considerations for Civil Engineers

Types of Spatial Data

- Absolute latitude/longitude/ellipsoid height.
- Relative lat/long/height - $\Delta \varphi/\Delta \lambda/\Delta h$.
- Absolute ECEF geocentric $X/Y/Z$ coordinates.
- Relative ECEF values, $\Delta X/\Delta Y/\Delta Z$.
- Absolute well defined (SPC) east/north/up.
- Relative SPC $\Delta e/\Delta n/\Delta u$. Is it true 3-D?
- Arbitrary $X/Y/Z$ values in an assumed system.

National Spatial Reference System (NSRS)

- http://www.ngs.noaa.gov/INFO/OnePagers/NSRS.html
 (The NGS establishes and maintains the NSRS.)
- NAD 27 – horizontal datum, outdated.
- NGVD 29 – vertical datum, outdated.
- NAD 83 – horizontal only, big improvement.
- NAD 83 (XXXX) – 3-D since (2007)
- NAVD 88 – vertical based upon geoid & 1 BM.
- WGS 84 – is both an ellipsoid and a datum.
- ITRF – defined and supported by scientists.
Models Used When Working with Spatial Data

• Local – assumed origin and orientation.
 - Can be horizontal or vertical (2-D or 1-D)
 - Or, it could be 3-D. What about flat Earth?
• State Plane Coordinates (and Elevation)
• Geodetic latitude/longitude/ellipsoid height
 - Geometrical geodesy, on ellipsoid surface.
 - Physical geodesy and geoid modeling.
• Geocentric ECEF, true rectangular 3-D. In this environment, elevation is derived. That’s OK.
Advantages of using State Plane Coordinates

- Used in many GIS data bases as absolute coordinates defining unique location.
- Computations use simple 2-D equations.
- One-way traverses are used instead of loops.
- Parallel grid meridians used in plane surveys.
- Elevations are added for third dimension.
- SPC have been standardized and accepted.
- Concepts integrated into commercial software.
Disadvantages of using State Plane Coordinates

• The map projection model is strictly 2-D.
• Distances are distorted in two ways:
 - Grid scale factor (projection 3-D to 2-D).
 - Elevation factor (horizontal not at sea level).
• Grid meridians do not portray true north.
• Elevations are used as third dimension but the reference surface for elevation is not flat.
• GIS needs unique designations. Many states have more than 1 zone. Texas has 5 zones.
Advantages of Using the GSDM

• All the pieces are in place & in public domain.
• Equally applicable world-wide, all disciplines.
• Provides a standard for data interchange.
• Model does not distort survey measurements.
• Supports use of spatial data accuracy.
• Preserves character of 3-D measurements.
• Inverse gives ground distance & true azimuth.
Disadvantages of Using the GSDM

- The concept is “new” and not widely used.
- Relies on understanding more than rote.
- Software options are, so far, limited.
- The GSDM supports too many options:
 - Geocentric Coordinates.
 - Geodetic coordinates.
 - State plane coordinates.
 - Local & assumed coordinates.
Spatial Data Considerations for Civil Engineers

Spatial Data Accuracy

- Digital spatial data are not “exact.”
- Consequences of bad data can be severe.
 - Mars probe crash $125 M – Sept. 1999

- Current spatial data accuracy standards:
- Stochastic model (of GSDM) handles standard deviations and error propagation.
Process and Content

• This part is abstract but worthy of discussion.
• Doing things right (process) and doing the right thing (content) are both important.
• Some equate:
 - Management with process and
 - Leadership and vision with content.
• See http://www.globalcogo.com/process.pdf
Conclusions - I

• Many persons use spatial data.
• Technicians can do an excellent job of collecting data/making measurements.
• Professionals solve problems by generating creative solutions – often using spatial data.
• Logic – what happens if I start with a simple assumption (a single origin for 3-D data) and add components defined by solid geometry? You get the GSDM!
Conclusions- II

• Spatial data accuracy is huge issue!
• How good are the data?
• What is the cost of good data?
• What are the consequences of bad data?
• Who is responsible for writing/enforcing the standards and specifications?
• The GSDM provides tools for establishing, tracking, and using standard deviations.
Additional sources of information

- Equipment vendors.
- Colleges and Universities.
- Other practicing professionals.
- Book – “The 3-D Global Spatial Data Model: Foundation of the Spatial Data Infrastructure”

Seminars - various
Additional Opportunities – SPAR 2011

• See http://sparllc.com/spar2011.php

• 3-D imaging and 3-D laser scanning for engineers, surveyors, photogrammetrists, etc.

• 11th Annual Meeting, March 21-24, 2011, Woodlands, (Houston) TX.

• On March 19th (at the same place) ASCE Geomatics Division will host workshop on:
 - The Global Spatial Data Model (GSDM) 4 hr.
 - Real-time GPS Networks (RTN) 4 hr.
 (Will qualify for continuing education credit.)