# The 3-D Global Spatial Data Model: Principles and Applications Second Edition

Earl F. Burkholder, PS, PE, F.ASCE

## **Abridged Table of Contents**

- I. The Global Spatial Data Model (GSDM) Defined
  - A. Introduction
  - B. The GSDM
  - C. BURKORD<sup>TM</sup> Software and Database
  - D. Summary
  - E. References

#### II. FEATURING THE 3-D GLOBAL SPATIAL DATA MODEL

- A. Introduction
- B. The GSDM Facilitates Existing Initiatives
- C. Other Applications
- D. Information Provided by the GSDM
- E. Summary
- F. References

#### III. SPATIAL DATA AND THE SCIENCE OF MEASUREMENT

- A. Introduction
- B. Spatial Data Defined
- C. Coordinate Systems Give Meaning to Spatial Data
- D. Spatial Data Types
- E. Spatial Data Visualization is Well Defined
- F. Direct/Indirect Measurements Contain Uncertainty
- G. Measurements Used to Create Spatial Data
- H. Primary Spatial Data Based On:
- I. Derived Spatial Data Are Computed From Primary Spatial Data
- J. Establishing and Preserving the Value of Spatial Data
- K. Summary
- L. References

#### IV. SUMMARY OF MATHEMATICAL CONCEPTS

- A. Introduction
- B. Conventions
- C. Logic
- D. Arithmetic
- E. Algebra
- F. Geometry
- G. Solid Geometry
- H. Trigonometry
- I. Spherical Trigonometry

- J. Calculus
- K. Probability and Statistics
- L. Models
- M. Error Propagation
- N. Error Ellipses
- O. Least Squares
- P. Applications to the GSDM
- Q. References

## V. GEOMETRICAL MODELS FOR SPATIAL DATA COMPUTATIONS

- A. Introduction
- B. Conventions
- C. Two-dimensional Cartesian Models
- D. Coordinate Geometry
- E. Circular Curves
- F. Spiral Curves
- G. Radial Surveying
- H. Vertical Curves
- I. Three-dimensional Models for Spatial Data
- J. References

#### VI. OVERVIEW OF GEODESY

- A. Introduction: Science and Art
- B. Field of Geodesy
- C. Goals of Geodesy
- D. Historical Perspective
- E. Developments During the 19<sup>th</sup> and 20<sup>th</sup> Centuries
- F. Forecast for the 21<sup>st</sup> Century
- G. References

## VII. GEOMETRICAL GEODESY

- A. Introduction
- B. Two-dimensional Ellipse
- C. Three-dimensional Ellipsoid
- D. Rotational Ellipsoid
- E. Geodetic Line
- F. Geodetic Position Computation Forward and Inverse
- G. GSDM 3-D Geodetic Position Computations
- H. References

#### VIII. GEODETIC DATUMS

- A. Introduction
- B. Horizontal Datum's
- C. Vertical Datum's
- D. Datum Transformations
- E. 3-D Datum's
- F. References

## IX. PHYSICAL GEODESY

- A. Introduction
- B. Gravity
- C. Definitions
- D. Gravity and the Shape of the Geoid
- E. Laplace Correction
- F. Measurements and Computations
- G. Use of Ellipsoid Heights in Place of Orthometric Heights
- H. The Need for Geoid Modeling
- I. Geoid Modeling and the GSDM
- J. Using a Geoid Model
- K. References

## X. SATELLITE GEODESY AND GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS)

- A. Introduction
- B. Brief History of Satellite Positioning
- C. Modes of Positioning
- D. Satellite Signals
- E. Differencing
- F. RINEX Data
- G. Processing GPS Data
- H. The Future of Surveying Control Networks Has Arrived
- I. References

## XI. MAP PROJECTIONS AND STATE PLANE COORDINATES

- A. INTRODUCTION: ROUND EARTH FLAT MAP
- B. Projection Criteria
- C. Projection Figures
- D. Permissible Distortion and Area Covered
- E. U.S. State Plane Coordinate Systems (SPCS)
- F. Computational Procedures
- G. Algorithms for Traditional Map Projections
- H. Low Distortion Projections (LDP)
- I. References

#### XII. SPATIAL DATA ACCURACY

- A. Introduction
- B. Forces Driving Change
- C. Transition
- D. Consequences
- E. Accuracy
- F. Observations, Measurements, and Error Propagation
- G. Example
- H. References

## XIII. USING THE GSDM TO COMPUTE A LINEAR LEAST SQUARES NETWORK

- A. Introduction
- B. Parameters and Linearization
- C. Baselines and Vectors
- D. Observations and Measurements
- E. Covariances Matrices and Weight Matrices
- F. Two Equivalent Adjustment Methods
- G. Formulation of Matrices Indirect Observations
- H. Example GNSS Network Project in Wisconsin
- I. RINEX Data Used to Build Wisconsin Network
- J. Blunder Checks
- K. Building Matrices for a Linear Least Squares Solution
- L. Computer Printout
- M. Notes Pertaining to Adjustment
- N. References

# XIV COMPUTING NETWORK ACCURACY AND LOCAL ACCURACY USING THE GLOBAL SPATIAL DATA MODEL

- A. Introduction
- B. Background
- C. Summary of Pertinent Concepts
- D. Detailed Example Based on Wisconsin Network
- E. Conclusion
- F. References

## XV USING THE GSDM – PROJECTS AND APPLICATIONS

- A. Introduction
- B. Features
- C. Database Issues
- D. Implementation Issues
- E. Examples and Applications
- F. The Future Will be What We Make It.

#### **APPENDICES**

- A. Rotation Matrix Derivation
- B. 1983 State Plane Coordinate Zone Constants
- C. Example Spreadsheet Computation Network Accuracy and Local Accuracy
- D. History of the Global Spatial Data Model (GSDM)
- E. Evolution of the Meaning of Terms: Network Accuracy and Local Accuracy